KyanChen's picture
init
f549064
raw
history blame
6.85 kB
# Copyright (c) OpenMMLab. All rights reserved.
from collections.abc import Sequence
import numpy as np
from mmengine.logging import print_log
from terminaltables import AsciiTable
from .bbox_overlaps import bbox_overlaps
def _recalls(all_ious, proposal_nums, thrs):
img_num = all_ious.shape[0]
total_gt_num = sum([ious.shape[0] for ious in all_ious])
_ious = np.zeros((proposal_nums.size, total_gt_num), dtype=np.float32)
for k, proposal_num in enumerate(proposal_nums):
tmp_ious = np.zeros(0)
for i in range(img_num):
ious = all_ious[i][:, :proposal_num].copy()
gt_ious = np.zeros((ious.shape[0]))
if ious.size == 0:
tmp_ious = np.hstack((tmp_ious, gt_ious))
continue
for j in range(ious.shape[0]):
gt_max_overlaps = ious.argmax(axis=1)
max_ious = ious[np.arange(0, ious.shape[0]), gt_max_overlaps]
gt_idx = max_ious.argmax()
gt_ious[j] = max_ious[gt_idx]
box_idx = gt_max_overlaps[gt_idx]
ious[gt_idx, :] = -1
ious[:, box_idx] = -1
tmp_ious = np.hstack((tmp_ious, gt_ious))
_ious[k, :] = tmp_ious
_ious = np.fliplr(np.sort(_ious, axis=1))
recalls = np.zeros((proposal_nums.size, thrs.size))
for i, thr in enumerate(thrs):
recalls[:, i] = (_ious >= thr).sum(axis=1) / float(total_gt_num)
return recalls
def set_recall_param(proposal_nums, iou_thrs):
"""Check proposal_nums and iou_thrs and set correct format."""
if isinstance(proposal_nums, Sequence):
_proposal_nums = np.array(proposal_nums)
elif isinstance(proposal_nums, int):
_proposal_nums = np.array([proposal_nums])
else:
_proposal_nums = proposal_nums
if iou_thrs is None:
_iou_thrs = np.array([0.5])
elif isinstance(iou_thrs, Sequence):
_iou_thrs = np.array(iou_thrs)
elif isinstance(iou_thrs, float):
_iou_thrs = np.array([iou_thrs])
else:
_iou_thrs = iou_thrs
return _proposal_nums, _iou_thrs
def eval_recalls(gts,
proposals,
proposal_nums=None,
iou_thrs=0.5,
logger=None,
use_legacy_coordinate=False):
"""Calculate recalls.
Args:
gts (list[ndarray]): a list of arrays of shape (n, 4)
proposals (list[ndarray]): a list of arrays of shape (k, 4) or (k, 5)
proposal_nums (int | Sequence[int]): Top N proposals to be evaluated.
iou_thrs (float | Sequence[float]): IoU thresholds. Default: 0.5.
logger (logging.Logger | str | None): The way to print the recall
summary. See `mmengine.logging.print_log()` for details.
Default: None.
use_legacy_coordinate (bool): Whether use coordinate system
in mmdet v1.x. "1" was added to both height and width
which means w, h should be
computed as 'x2 - x1 + 1` and 'y2 - y1 + 1'. Default: False.
Returns:
ndarray: recalls of different ious and proposal nums
"""
img_num = len(gts)
assert img_num == len(proposals)
proposal_nums, iou_thrs = set_recall_param(proposal_nums, iou_thrs)
all_ious = []
for i in range(img_num):
if proposals[i].ndim == 2 and proposals[i].shape[1] == 5:
scores = proposals[i][:, 4]
sort_idx = np.argsort(scores)[::-1]
img_proposal = proposals[i][sort_idx, :]
else:
img_proposal = proposals[i]
prop_num = min(img_proposal.shape[0], proposal_nums[-1])
if gts[i] is None or gts[i].shape[0] == 0:
ious = np.zeros((0, img_proposal.shape[0]), dtype=np.float32)
else:
ious = bbox_overlaps(
gts[i],
img_proposal[:prop_num, :4],
use_legacy_coordinate=use_legacy_coordinate)
all_ious.append(ious)
all_ious = np.array(all_ious)
recalls = _recalls(all_ious, proposal_nums, iou_thrs)
print_recall_summary(recalls, proposal_nums, iou_thrs, logger=logger)
return recalls
def print_recall_summary(recalls,
proposal_nums,
iou_thrs,
row_idxs=None,
col_idxs=None,
logger=None):
"""Print recalls in a table.
Args:
recalls (ndarray): calculated from `bbox_recalls`
proposal_nums (ndarray or list): top N proposals
iou_thrs (ndarray or list): iou thresholds
row_idxs (ndarray): which rows(proposal nums) to print
col_idxs (ndarray): which cols(iou thresholds) to print
logger (logging.Logger | str | None): The way to print the recall
summary. See `mmengine.logging.print_log()` for details.
Default: None.
"""
proposal_nums = np.array(proposal_nums, dtype=np.int32)
iou_thrs = np.array(iou_thrs)
if row_idxs is None:
row_idxs = np.arange(proposal_nums.size)
if col_idxs is None:
col_idxs = np.arange(iou_thrs.size)
row_header = [''] + iou_thrs[col_idxs].tolist()
table_data = [row_header]
for i, num in enumerate(proposal_nums[row_idxs]):
row = [f'{val:.3f}' for val in recalls[row_idxs[i], col_idxs].tolist()]
row.insert(0, num)
table_data.append(row)
table = AsciiTable(table_data)
print_log('\n' + table.table, logger=logger)
def plot_num_recall(recalls, proposal_nums):
"""Plot Proposal_num-Recalls curve.
Args:
recalls(ndarray or list): shape (k,)
proposal_nums(ndarray or list): same shape as `recalls`
"""
if isinstance(proposal_nums, np.ndarray):
_proposal_nums = proposal_nums.tolist()
else:
_proposal_nums = proposal_nums
if isinstance(recalls, np.ndarray):
_recalls = recalls.tolist()
else:
_recalls = recalls
import matplotlib.pyplot as plt
f = plt.figure()
plt.plot([0] + _proposal_nums, [0] + _recalls)
plt.xlabel('Proposal num')
plt.ylabel('Recall')
plt.axis([0, proposal_nums.max(), 0, 1])
f.show()
def plot_iou_recall(recalls, iou_thrs):
"""Plot IoU-Recalls curve.
Args:
recalls(ndarray or list): shape (k,)
iou_thrs(ndarray or list): same shape as `recalls`
"""
if isinstance(iou_thrs, np.ndarray):
_iou_thrs = iou_thrs.tolist()
else:
_iou_thrs = iou_thrs
if isinstance(recalls, np.ndarray):
_recalls = recalls.tolist()
else:
_recalls = recalls
import matplotlib.pyplot as plt
f = plt.figure()
plt.plot(_iou_thrs + [1.0], _recalls + [0.])
plt.xlabel('IoU')
plt.ylabel('Recall')
plt.axis([iou_thrs.min(), 1, 0, 1])
f.show()