KyanChen's picture
init
f549064
raw
history blame
16.9 kB
# Copyright (c) OpenMMLab. All rights reserved.
from abc import abstractmethod
from typing import Optional, Union
import torch
import torch.nn.functional as F
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.registry import TASK_UTILS
from mmdet.structures.bbox import bbox_overlaps, bbox_xyxy_to_cxcywh
class BaseMatchCost:
"""Base match cost class.
Args:
weight (Union[float, int]): Cost weight. Defaults to 1.
"""
def __init__(self, weight: Union[float, int] = 1.) -> None:
self.weight = weight
@abstractmethod
def __call__(self,
pred_instances: InstanceData,
gt_instances: InstanceData,
img_meta: Optional[dict] = None,
**kwargs) -> Tensor:
"""Compute match cost.
Args:
pred_instances (:obj:`InstanceData`): Instances of model
predictions. It includes ``priors``, and the priors can
be anchors or points, or the bboxes predicted by the
previous stage, has shape (n, 4). The bboxes predicted by
the current model or stage will be named ``bboxes``,
``labels``, and ``scores``, the same as the ``InstanceData``
in other places.
gt_instances (:obj:`InstanceData`): Ground truth of instance
annotations. It usually includes ``bboxes``, with shape (k, 4),
and ``labels``, with shape (k, ).
img_meta (dict, optional): Image information.
Returns:
Tensor: Match Cost matrix of shape (num_preds, num_gts).
"""
pass
@TASK_UTILS.register_module()
class BBoxL1Cost(BaseMatchCost):
"""BBoxL1Cost.
Note: ``bboxes`` in ``InstanceData`` passed in is of format 'xyxy'
and its coordinates are unnormalized.
Args:
box_format (str, optional): 'xyxy' for DETR, 'xywh' for Sparse_RCNN.
Defaults to 'xyxy'.
weight (Union[float, int]): Cost weight. Defaults to 1.
Examples:
>>> from mmdet.models.task_modules.assigners.
... match_costs.match_cost import BBoxL1Cost
>>> import torch
>>> self = BBoxL1Cost()
>>> bbox_pred = torch.rand(1, 4)
>>> gt_bboxes= torch.FloatTensor([[0, 0, 2, 4], [1, 2, 3, 4]])
>>> factor = torch.tensor([10, 8, 10, 8])
>>> self(bbox_pred, gt_bboxes, factor)
tensor([[1.6172, 1.6422]])
"""
def __init__(self,
box_format: str = 'xyxy',
weight: Union[float, int] = 1.) -> None:
super().__init__(weight=weight)
assert box_format in ['xyxy', 'xywh']
self.box_format = box_format
def __call__(self,
pred_instances: InstanceData,
gt_instances: InstanceData,
img_meta: Optional[dict] = None,
**kwargs) -> Tensor:
"""Compute match cost.
Args:
pred_instances (:obj:`InstanceData`): ``bboxes`` inside is
predicted boxes with unnormalized coordinate
(x, y, x, y).
gt_instances (:obj:`InstanceData`): ``bboxes`` inside is gt
bboxes with unnormalized coordinate (x, y, x, y).
img_meta (Optional[dict]): Image information. Defaults to None.
Returns:
Tensor: Match Cost matrix of shape (num_preds, num_gts).
"""
pred_bboxes = pred_instances.bboxes
gt_bboxes = gt_instances.bboxes
# convert box format
if self.box_format == 'xywh':
gt_bboxes = bbox_xyxy_to_cxcywh(gt_bboxes)
pred_bboxes = bbox_xyxy_to_cxcywh(pred_bboxes)
# normalized
img_h, img_w = img_meta['img_shape']
factor = gt_bboxes.new_tensor([img_w, img_h, img_w,
img_h]).unsqueeze(0)
gt_bboxes = gt_bboxes / factor
pred_bboxes = pred_bboxes / factor
bbox_cost = torch.cdist(pred_bboxes, gt_bboxes, p=1)
return bbox_cost * self.weight
@TASK_UTILS.register_module()
class IoUCost(BaseMatchCost):
"""IoUCost.
Note: ``bboxes`` in ``InstanceData`` passed in is of format 'xyxy'
and its coordinates are unnormalized.
Args:
iou_mode (str): iou mode such as 'iou', 'giou'. Defaults to 'giou'.
weight (Union[float, int]): Cost weight. Defaults to 1.
Examples:
>>> from mmdet.models.task_modules.assigners.
... match_costs.match_cost import IoUCost
>>> import torch
>>> self = IoUCost()
>>> bboxes = torch.FloatTensor([[1,1, 2, 2], [2, 2, 3, 4]])
>>> gt_bboxes = torch.FloatTensor([[0, 0, 2, 4], [1, 2, 3, 4]])
>>> self(bboxes, gt_bboxes)
tensor([[-0.1250, 0.1667],
[ 0.1667, -0.5000]])
"""
def __init__(self, iou_mode: str = 'giou', weight: Union[float, int] = 1.):
super().__init__(weight=weight)
self.iou_mode = iou_mode
def __call__(self,
pred_instances: InstanceData,
gt_instances: InstanceData,
img_meta: Optional[dict] = None,
**kwargs):
"""Compute match cost.
Args:
pred_instances (:obj:`InstanceData`): ``bboxes`` inside is
predicted boxes with unnormalized coordinate
(x, y, x, y).
gt_instances (:obj:`InstanceData`): ``bboxes`` inside is gt
bboxes with unnormalized coordinate (x, y, x, y).
img_meta (Optional[dict]): Image information. Defaults to None.
Returns:
Tensor: Match Cost matrix of shape (num_preds, num_gts).
"""
pred_bboxes = pred_instances.bboxes
gt_bboxes = gt_instances.bboxes
overlaps = bbox_overlaps(
pred_bboxes, gt_bboxes, mode=self.iou_mode, is_aligned=False)
# The 1 is a constant that doesn't change the matching, so omitted.
iou_cost = -overlaps
return iou_cost * self.weight
@TASK_UTILS.register_module()
class ClassificationCost(BaseMatchCost):
"""ClsSoftmaxCost.
Args:
weight (Union[float, int]): Cost weight. Defaults to 1.
Examples:
>>> from mmdet.models.task_modules.assigners.
... match_costs.match_cost import ClassificationCost
>>> import torch
>>> self = ClassificationCost()
>>> cls_pred = torch.rand(4, 3)
>>> gt_labels = torch.tensor([0, 1, 2])
>>> factor = torch.tensor([10, 8, 10, 8])
>>> self(cls_pred, gt_labels)
tensor([[-0.3430, -0.3525, -0.3045],
[-0.3077, -0.2931, -0.3992],
[-0.3664, -0.3455, -0.2881],
[-0.3343, -0.2701, -0.3956]])
"""
def __init__(self, weight: Union[float, int] = 1) -> None:
super().__init__(weight=weight)
def __call__(self,
pred_instances: InstanceData,
gt_instances: InstanceData,
img_meta: Optional[dict] = None,
**kwargs) -> Tensor:
"""Compute match cost.
Args:
pred_instances (:obj:`InstanceData`): ``scores`` inside is
predicted classification logits, of shape
(num_queries, num_class).
gt_instances (:obj:`InstanceData`): ``labels`` inside should have
shape (num_gt, ).
img_meta (Optional[dict]): _description_. Defaults to None.
Returns:
Tensor: Match Cost matrix of shape (num_preds, num_gts).
"""
pred_scores = pred_instances.scores
gt_labels = gt_instances.labels
pred_scores = pred_scores.softmax(-1)
cls_cost = -pred_scores[:, gt_labels]
return cls_cost * self.weight
@TASK_UTILS.register_module()
class FocalLossCost(BaseMatchCost):
"""FocalLossCost.
Args:
alpha (Union[float, int]): focal_loss alpha. Defaults to 0.25.
gamma (Union[float, int]): focal_loss gamma. Defaults to 2.
eps (float): Defaults to 1e-12.
binary_input (bool): Whether the input is binary. Currently,
binary_input = True is for masks input, binary_input = False
is for label input. Defaults to False.
weight (Union[float, int]): Cost weight. Defaults to 1.
"""
def __init__(self,
alpha: Union[float, int] = 0.25,
gamma: Union[float, int] = 2,
eps: float = 1e-12,
binary_input: bool = False,
weight: Union[float, int] = 1.) -> None:
super().__init__(weight=weight)
self.alpha = alpha
self.gamma = gamma
self.eps = eps
self.binary_input = binary_input
def _focal_loss_cost(self, cls_pred: Tensor, gt_labels: Tensor) -> Tensor:
"""
Args:
cls_pred (Tensor): Predicted classification logits, shape
(num_queries, num_class).
gt_labels (Tensor): Label of `gt_bboxes`, shape (num_gt,).
Returns:
torch.Tensor: cls_cost value with weight
"""
cls_pred = cls_pred.sigmoid()
neg_cost = -(1 - cls_pred + self.eps).log() * (
1 - self.alpha) * cls_pred.pow(self.gamma)
pos_cost = -(cls_pred + self.eps).log() * self.alpha * (
1 - cls_pred).pow(self.gamma)
cls_cost = pos_cost[:, gt_labels] - neg_cost[:, gt_labels]
return cls_cost * self.weight
def _mask_focal_loss_cost(self, cls_pred, gt_labels) -> Tensor:
"""
Args:
cls_pred (Tensor): Predicted classification logits.
in shape (num_queries, d1, ..., dn), dtype=torch.float32.
gt_labels (Tensor): Ground truth in shape (num_gt, d1, ..., dn),
dtype=torch.long. Labels should be binary.
Returns:
Tensor: Focal cost matrix with weight in shape\
(num_queries, num_gt).
"""
cls_pred = cls_pred.flatten(1)
gt_labels = gt_labels.flatten(1).float()
n = cls_pred.shape[1]
cls_pred = cls_pred.sigmoid()
neg_cost = -(1 - cls_pred + self.eps).log() * (
1 - self.alpha) * cls_pred.pow(self.gamma)
pos_cost = -(cls_pred + self.eps).log() * self.alpha * (
1 - cls_pred).pow(self.gamma)
cls_cost = torch.einsum('nc,mc->nm', pos_cost, gt_labels) + \
torch.einsum('nc,mc->nm', neg_cost, (1 - gt_labels))
return cls_cost / n * self.weight
def __call__(self,
pred_instances: InstanceData,
gt_instances: InstanceData,
img_meta: Optional[dict] = None,
**kwargs) -> Tensor:
"""Compute match cost.
Args:
pred_instances (:obj:`InstanceData`): Predicted instances which
must contain ``scores`` or ``masks``.
gt_instances (:obj:`InstanceData`): Ground truth which must contain
``labels`` or ``mask``.
img_meta (Optional[dict]): Image information. Defaults to None.
Returns:
Tensor: Match Cost matrix of shape (num_preds, num_gts).
"""
if self.binary_input:
pred_masks = pred_instances.masks
gt_masks = gt_instances.masks
return self._mask_focal_loss_cost(pred_masks, gt_masks)
else:
pred_scores = pred_instances.scores
gt_labels = gt_instances.labels
return self._focal_loss_cost(pred_scores, gt_labels)
@TASK_UTILS.register_module()
class DiceCost(BaseMatchCost):
"""Cost of mask assignments based on dice losses.
Args:
pred_act (bool): Whether to apply sigmoid to mask_pred.
Defaults to False.
eps (float): Defaults to 1e-3.
naive_dice (bool): If True, use the naive dice loss
in which the power of the number in the denominator is
the first power. If False, use the second power that
is adopted by K-Net and SOLO. Defaults to True.
weight (Union[float, int]): Cost weight. Defaults to 1.
"""
def __init__(self,
pred_act: bool = False,
eps: float = 1e-3,
naive_dice: bool = True,
weight: Union[float, int] = 1.) -> None:
super().__init__(weight=weight)
self.pred_act = pred_act
self.eps = eps
self.naive_dice = naive_dice
def _binary_mask_dice_loss(self, mask_preds: Tensor,
gt_masks: Tensor) -> Tensor:
"""
Args:
mask_preds (Tensor): Mask prediction in shape (num_queries, *).
gt_masks (Tensor): Ground truth in shape (num_gt, *)
store 0 or 1, 0 for negative class and 1 for
positive class.
Returns:
Tensor: Dice cost matrix in shape (num_queries, num_gt).
"""
mask_preds = mask_preds.flatten(1)
gt_masks = gt_masks.flatten(1).float()
numerator = 2 * torch.einsum('nc,mc->nm', mask_preds, gt_masks)
if self.naive_dice:
denominator = mask_preds.sum(-1)[:, None] + \
gt_masks.sum(-1)[None, :]
else:
denominator = mask_preds.pow(2).sum(1)[:, None] + \
gt_masks.pow(2).sum(1)[None, :]
loss = 1 - (numerator + self.eps) / (denominator + self.eps)
return loss
def __call__(self,
pred_instances: InstanceData,
gt_instances: InstanceData,
img_meta: Optional[dict] = None,
**kwargs) -> Tensor:
"""Compute match cost.
Args:
pred_instances (:obj:`InstanceData`): Predicted instances which
must contain ``masks``.
gt_instances (:obj:`InstanceData`): Ground truth which must contain
``mask``.
img_meta (Optional[dict]): Image information. Defaults to None.
Returns:
Tensor: Match Cost matrix of shape (num_preds, num_gts).
"""
pred_masks = pred_instances.masks
gt_masks = gt_instances.masks
if self.pred_act:
pred_masks = pred_masks.sigmoid()
dice_cost = self._binary_mask_dice_loss(pred_masks, gt_masks)
return dice_cost * self.weight
@TASK_UTILS.register_module()
class CrossEntropyLossCost(BaseMatchCost):
"""CrossEntropyLossCost.
Args:
use_sigmoid (bool): Whether the prediction uses sigmoid
of softmax. Defaults to True.
weight (Union[float, int]): Cost weight. Defaults to 1.
"""
def __init__(self,
use_sigmoid: bool = True,
weight: Union[float, int] = 1.) -> None:
super().__init__(weight=weight)
self.use_sigmoid = use_sigmoid
def _binary_cross_entropy(self, cls_pred: Tensor,
gt_labels: Tensor) -> Tensor:
"""
Args:
cls_pred (Tensor): The prediction with shape (num_queries, 1, *) or
(num_queries, *).
gt_labels (Tensor): The learning label of prediction with
shape (num_gt, *).
Returns:
Tensor: Cross entropy cost matrix in shape (num_queries, num_gt).
"""
cls_pred = cls_pred.flatten(1).float()
gt_labels = gt_labels.flatten(1).float()
n = cls_pred.shape[1]
pos = F.binary_cross_entropy_with_logits(
cls_pred, torch.ones_like(cls_pred), reduction='none')
neg = F.binary_cross_entropy_with_logits(
cls_pred, torch.zeros_like(cls_pred), reduction='none')
cls_cost = torch.einsum('nc,mc->nm', pos, gt_labels) + \
torch.einsum('nc,mc->nm', neg, 1 - gt_labels)
cls_cost = cls_cost / n
return cls_cost
def __call__(self,
pred_instances: InstanceData,
gt_instances: InstanceData,
img_meta: Optional[dict] = None,
**kwargs) -> Tensor:
"""Compute match cost.
Args:
pred_instances (:obj:`InstanceData`): Predicted instances which
must contain ``scores`` or ``masks``.
gt_instances (:obj:`InstanceData`): Ground truth which must contain
``labels`` or ``masks``.
img_meta (Optional[dict]): Image information. Defaults to None.
Returns:
Tensor: Match Cost matrix of shape (num_preds, num_gts).
"""
pred_masks = pred_instances.masks
gt_masks = gt_instances.masks
if self.use_sigmoid:
cls_cost = self._binary_cross_entropy(pred_masks, gt_masks)
else:
raise NotImplementedError
return cls_cost * self.weight