ai-photo-gallery / mmdet /models /task_modules /assigners /dynamic_soft_label_assigner.py
KyanChen's picture
init
f549064
raw
history blame
9.85 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Tuple
import torch
import torch.nn.functional as F
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.registry import TASK_UTILS
from mmdet.structures.bbox import BaseBoxes
from mmdet.utils import ConfigType
from .assign_result import AssignResult
from .base_assigner import BaseAssigner
INF = 100000000
EPS = 1.0e-7
def center_of_mass(masks: Tensor, eps: float = 1e-7) -> Tensor:
"""Compute the masks center of mass.
Args:
masks: Mask tensor, has shape (num_masks, H, W).
eps: a small number to avoid normalizer to be zero.
Defaults to 1e-7.
Returns:
Tensor: The masks center of mass. Has shape (num_masks, 2).
"""
n, h, w = masks.shape
grid_h = torch.arange(h, device=masks.device)[:, None]
grid_w = torch.arange(w, device=masks.device)
normalizer = masks.sum(dim=(1, 2)).float().clamp(min=eps)
center_y = (masks * grid_h).sum(dim=(1, 2)) / normalizer
center_x = (masks * grid_w).sum(dim=(1, 2)) / normalizer
center = torch.cat([center_x[:, None], center_y[:, None]], dim=1)
return center
@TASK_UTILS.register_module()
class DynamicSoftLabelAssigner(BaseAssigner):
"""Computes matching between predictions and ground truth with dynamic soft
label assignment.
Args:
soft_center_radius (float): Radius of the soft center prior.
Defaults to 3.0.
topk (int): Select top-k predictions to calculate dynamic k
best matches for each gt. Defaults to 13.
iou_weight (float): The scale factor of iou cost. Defaults to 3.0.
iou_calculator (ConfigType): Config of overlaps Calculator.
Defaults to dict(type='BboxOverlaps2D').
"""
def __init__(
self,
soft_center_radius: float = 3.0,
topk: int = 13,
iou_weight: float = 3.0,
iou_calculator: ConfigType = dict(type='BboxOverlaps2D')
) -> None:
self.soft_center_radius = soft_center_radius
self.topk = topk
self.iou_weight = iou_weight
self.iou_calculator = TASK_UTILS.build(iou_calculator)
def assign(self,
pred_instances: InstanceData,
gt_instances: InstanceData,
gt_instances_ignore: Optional[InstanceData] = None,
**kwargs) -> AssignResult:
"""Assign gt to priors.
Args:
pred_instances (:obj:`InstanceData`): Instances of model
predictions. It includes ``priors``, and the priors can
be anchors or points, or the bboxes predicted by the
previous stage, has shape (n, 4). The bboxes predicted by
the current model or stage will be named ``bboxes``,
``labels``, and ``scores``, the same as the ``InstanceData``
in other places.
gt_instances (:obj:`InstanceData`): Ground truth of instance
annotations. It usually includes ``bboxes``, with shape (k, 4),
and ``labels``, with shape (k, ).
gt_instances_ignore (:obj:`InstanceData`, optional): Instances
to be ignored during training. It includes ``bboxes``
attribute data that is ignored during training and testing.
Defaults to None.
Returns:
obj:`AssignResult`: The assigned result.
"""
gt_bboxes = gt_instances.bboxes
gt_labels = gt_instances.labels
num_gt = gt_bboxes.size(0)
decoded_bboxes = pred_instances.bboxes
pred_scores = pred_instances.scores
priors = pred_instances.priors
num_bboxes = decoded_bboxes.size(0)
# assign 0 by default
assigned_gt_inds = decoded_bboxes.new_full((num_bboxes, ),
0,
dtype=torch.long)
if num_gt == 0 or num_bboxes == 0:
# No ground truth or boxes, return empty assignment
max_overlaps = decoded_bboxes.new_zeros((num_bboxes, ))
if num_gt == 0:
# No truth, assign everything to background
assigned_gt_inds[:] = 0
assigned_labels = decoded_bboxes.new_full((num_bboxes, ),
-1,
dtype=torch.long)
return AssignResult(
num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels)
prior_center = priors[:, :2]
if isinstance(gt_bboxes, BaseBoxes):
is_in_gts = gt_bboxes.find_inside_points(prior_center)
else:
# Tensor boxes will be treated as horizontal boxes by defaults
lt_ = prior_center[:, None] - gt_bboxes[:, :2]
rb_ = gt_bboxes[:, 2:] - prior_center[:, None]
deltas = torch.cat([lt_, rb_], dim=-1)
is_in_gts = deltas.min(dim=-1).values > 0
valid_mask = is_in_gts.sum(dim=1) > 0
valid_decoded_bbox = decoded_bboxes[valid_mask]
valid_pred_scores = pred_scores[valid_mask]
num_valid = valid_decoded_bbox.size(0)
if num_valid == 0:
# No ground truth or boxes, return empty assignment
max_overlaps = decoded_bboxes.new_zeros((num_bboxes, ))
assigned_labels = decoded_bboxes.new_full((num_bboxes, ),
-1,
dtype=torch.long)
return AssignResult(
num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels)
if hasattr(gt_instances, 'masks'):
gt_center = center_of_mass(gt_instances.masks, eps=EPS)
elif isinstance(gt_bboxes, BaseBoxes):
gt_center = gt_bboxes.centers
else:
# Tensor boxes will be treated as horizontal boxes by defaults
gt_center = (gt_bboxes[:, :2] + gt_bboxes[:, 2:]) / 2.0
valid_prior = priors[valid_mask]
strides = valid_prior[:, 2]
distance = (valid_prior[:, None, :2] - gt_center[None, :, :]
).pow(2).sum(-1).sqrt() / strides[:, None]
soft_center_prior = torch.pow(10, distance - self.soft_center_radius)
pairwise_ious = self.iou_calculator(valid_decoded_bbox, gt_bboxes)
iou_cost = -torch.log(pairwise_ious + EPS) * self.iou_weight
gt_onehot_label = (
F.one_hot(gt_labels.to(torch.int64),
pred_scores.shape[-1]).float().unsqueeze(0).repeat(
num_valid, 1, 1))
valid_pred_scores = valid_pred_scores.unsqueeze(1).repeat(1, num_gt, 1)
soft_label = gt_onehot_label * pairwise_ious[..., None]
scale_factor = soft_label - valid_pred_scores.sigmoid()
soft_cls_cost = F.binary_cross_entropy_with_logits(
valid_pred_scores, soft_label,
reduction='none') * scale_factor.abs().pow(2.0)
soft_cls_cost = soft_cls_cost.sum(dim=-1)
cost_matrix = soft_cls_cost + iou_cost + soft_center_prior
matched_pred_ious, matched_gt_inds = self.dynamic_k_matching(
cost_matrix, pairwise_ious, num_gt, valid_mask)
# convert to AssignResult format
assigned_gt_inds[valid_mask] = matched_gt_inds + 1
assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1)
assigned_labels[valid_mask] = gt_labels[matched_gt_inds].long()
max_overlaps = assigned_gt_inds.new_full((num_bboxes, ),
-INF,
dtype=torch.float32)
max_overlaps[valid_mask] = matched_pred_ious
return AssignResult(
num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels)
def dynamic_k_matching(self, cost: Tensor, pairwise_ious: Tensor,
num_gt: int,
valid_mask: Tensor) -> Tuple[Tensor, Tensor]:
"""Use IoU and matching cost to calculate the dynamic top-k positive
targets. Same as SimOTA.
Args:
cost (Tensor): Cost matrix.
pairwise_ious (Tensor): Pairwise iou matrix.
num_gt (int): Number of gt.
valid_mask (Tensor): Mask for valid bboxes.
Returns:
tuple: matched ious and gt indexes.
"""
matching_matrix = torch.zeros_like(cost, dtype=torch.uint8)
# select candidate topk ious for dynamic-k calculation
candidate_topk = min(self.topk, pairwise_ious.size(0))
topk_ious, _ = torch.topk(pairwise_ious, candidate_topk, dim=0)
# calculate dynamic k for each gt
dynamic_ks = torch.clamp(topk_ious.sum(0).int(), min=1)
for gt_idx in range(num_gt):
_, pos_idx = torch.topk(
cost[:, gt_idx], k=dynamic_ks[gt_idx], largest=False)
matching_matrix[:, gt_idx][pos_idx] = 1
del topk_ious, dynamic_ks, pos_idx
prior_match_gt_mask = matching_matrix.sum(1) > 1
if prior_match_gt_mask.sum() > 0:
cost_min, cost_argmin = torch.min(
cost[prior_match_gt_mask, :], dim=1)
matching_matrix[prior_match_gt_mask, :] *= 0
matching_matrix[prior_match_gt_mask, cost_argmin] = 1
# get foreground mask inside box and center prior
fg_mask_inboxes = matching_matrix.sum(1) > 0
valid_mask[valid_mask.clone()] = fg_mask_inboxes
matched_gt_inds = matching_matrix[fg_mask_inboxes, :].argmax(1)
matched_pred_ious = (matching_matrix *
pairwise_ious).sum(1)[fg_mask_inboxes]
return matched_pred_ious, matched_gt_inds