Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Optional, Tuple | |
import torch | |
import torch.nn.functional as F | |
from mmengine.structures import InstanceData | |
from torch import Tensor | |
from mmdet.registry import TASK_UTILS | |
from mmdet.structures.bbox import BaseBoxes | |
from mmdet.utils import ConfigType | |
from .assign_result import AssignResult | |
from .base_assigner import BaseAssigner | |
INF = 100000000 | |
EPS = 1.0e-7 | |
def center_of_mass(masks: Tensor, eps: float = 1e-7) -> Tensor: | |
"""Compute the masks center of mass. | |
Args: | |
masks: Mask tensor, has shape (num_masks, H, W). | |
eps: a small number to avoid normalizer to be zero. | |
Defaults to 1e-7. | |
Returns: | |
Tensor: The masks center of mass. Has shape (num_masks, 2). | |
""" | |
n, h, w = masks.shape | |
grid_h = torch.arange(h, device=masks.device)[:, None] | |
grid_w = torch.arange(w, device=masks.device) | |
normalizer = masks.sum(dim=(1, 2)).float().clamp(min=eps) | |
center_y = (masks * grid_h).sum(dim=(1, 2)) / normalizer | |
center_x = (masks * grid_w).sum(dim=(1, 2)) / normalizer | |
center = torch.cat([center_x[:, None], center_y[:, None]], dim=1) | |
return center | |
class DynamicSoftLabelAssigner(BaseAssigner): | |
"""Computes matching between predictions and ground truth with dynamic soft | |
label assignment. | |
Args: | |
soft_center_radius (float): Radius of the soft center prior. | |
Defaults to 3.0. | |
topk (int): Select top-k predictions to calculate dynamic k | |
best matches for each gt. Defaults to 13. | |
iou_weight (float): The scale factor of iou cost. Defaults to 3.0. | |
iou_calculator (ConfigType): Config of overlaps Calculator. | |
Defaults to dict(type='BboxOverlaps2D'). | |
""" | |
def __init__( | |
self, | |
soft_center_radius: float = 3.0, | |
topk: int = 13, | |
iou_weight: float = 3.0, | |
iou_calculator: ConfigType = dict(type='BboxOverlaps2D') | |
) -> None: | |
self.soft_center_radius = soft_center_radius | |
self.topk = topk | |
self.iou_weight = iou_weight | |
self.iou_calculator = TASK_UTILS.build(iou_calculator) | |
def assign(self, | |
pred_instances: InstanceData, | |
gt_instances: InstanceData, | |
gt_instances_ignore: Optional[InstanceData] = None, | |
**kwargs) -> AssignResult: | |
"""Assign gt to priors. | |
Args: | |
pred_instances (:obj:`InstanceData`): Instances of model | |
predictions. It includes ``priors``, and the priors can | |
be anchors or points, or the bboxes predicted by the | |
previous stage, has shape (n, 4). The bboxes predicted by | |
the current model or stage will be named ``bboxes``, | |
``labels``, and ``scores``, the same as the ``InstanceData`` | |
in other places. | |
gt_instances (:obj:`InstanceData`): Ground truth of instance | |
annotations. It usually includes ``bboxes``, with shape (k, 4), | |
and ``labels``, with shape (k, ). | |
gt_instances_ignore (:obj:`InstanceData`, optional): Instances | |
to be ignored during training. It includes ``bboxes`` | |
attribute data that is ignored during training and testing. | |
Defaults to None. | |
Returns: | |
obj:`AssignResult`: The assigned result. | |
""" | |
gt_bboxes = gt_instances.bboxes | |
gt_labels = gt_instances.labels | |
num_gt = gt_bboxes.size(0) | |
decoded_bboxes = pred_instances.bboxes | |
pred_scores = pred_instances.scores | |
priors = pred_instances.priors | |
num_bboxes = decoded_bboxes.size(0) | |
# assign 0 by default | |
assigned_gt_inds = decoded_bboxes.new_full((num_bboxes, ), | |
0, | |
dtype=torch.long) | |
if num_gt == 0 or num_bboxes == 0: | |
# No ground truth or boxes, return empty assignment | |
max_overlaps = decoded_bboxes.new_zeros((num_bboxes, )) | |
if num_gt == 0: | |
# No truth, assign everything to background | |
assigned_gt_inds[:] = 0 | |
assigned_labels = decoded_bboxes.new_full((num_bboxes, ), | |
-1, | |
dtype=torch.long) | |
return AssignResult( | |
num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels) | |
prior_center = priors[:, :2] | |
if isinstance(gt_bboxes, BaseBoxes): | |
is_in_gts = gt_bboxes.find_inside_points(prior_center) | |
else: | |
# Tensor boxes will be treated as horizontal boxes by defaults | |
lt_ = prior_center[:, None] - gt_bboxes[:, :2] | |
rb_ = gt_bboxes[:, 2:] - prior_center[:, None] | |
deltas = torch.cat([lt_, rb_], dim=-1) | |
is_in_gts = deltas.min(dim=-1).values > 0 | |
valid_mask = is_in_gts.sum(dim=1) > 0 | |
valid_decoded_bbox = decoded_bboxes[valid_mask] | |
valid_pred_scores = pred_scores[valid_mask] | |
num_valid = valid_decoded_bbox.size(0) | |
if num_valid == 0: | |
# No ground truth or boxes, return empty assignment | |
max_overlaps = decoded_bboxes.new_zeros((num_bboxes, )) | |
assigned_labels = decoded_bboxes.new_full((num_bboxes, ), | |
-1, | |
dtype=torch.long) | |
return AssignResult( | |
num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels) | |
if hasattr(gt_instances, 'masks'): | |
gt_center = center_of_mass(gt_instances.masks, eps=EPS) | |
elif isinstance(gt_bboxes, BaseBoxes): | |
gt_center = gt_bboxes.centers | |
else: | |
# Tensor boxes will be treated as horizontal boxes by defaults | |
gt_center = (gt_bboxes[:, :2] + gt_bboxes[:, 2:]) / 2.0 | |
valid_prior = priors[valid_mask] | |
strides = valid_prior[:, 2] | |
distance = (valid_prior[:, None, :2] - gt_center[None, :, :] | |
).pow(2).sum(-1).sqrt() / strides[:, None] | |
soft_center_prior = torch.pow(10, distance - self.soft_center_radius) | |
pairwise_ious = self.iou_calculator(valid_decoded_bbox, gt_bboxes) | |
iou_cost = -torch.log(pairwise_ious + EPS) * self.iou_weight | |
gt_onehot_label = ( | |
F.one_hot(gt_labels.to(torch.int64), | |
pred_scores.shape[-1]).float().unsqueeze(0).repeat( | |
num_valid, 1, 1)) | |
valid_pred_scores = valid_pred_scores.unsqueeze(1).repeat(1, num_gt, 1) | |
soft_label = gt_onehot_label * pairwise_ious[..., None] | |
scale_factor = soft_label - valid_pred_scores.sigmoid() | |
soft_cls_cost = F.binary_cross_entropy_with_logits( | |
valid_pred_scores, soft_label, | |
reduction='none') * scale_factor.abs().pow(2.0) | |
soft_cls_cost = soft_cls_cost.sum(dim=-1) | |
cost_matrix = soft_cls_cost + iou_cost + soft_center_prior | |
matched_pred_ious, matched_gt_inds = self.dynamic_k_matching( | |
cost_matrix, pairwise_ious, num_gt, valid_mask) | |
# convert to AssignResult format | |
assigned_gt_inds[valid_mask] = matched_gt_inds + 1 | |
assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1) | |
assigned_labels[valid_mask] = gt_labels[matched_gt_inds].long() | |
max_overlaps = assigned_gt_inds.new_full((num_bboxes, ), | |
-INF, | |
dtype=torch.float32) | |
max_overlaps[valid_mask] = matched_pred_ious | |
return AssignResult( | |
num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels) | |
def dynamic_k_matching(self, cost: Tensor, pairwise_ious: Tensor, | |
num_gt: int, | |
valid_mask: Tensor) -> Tuple[Tensor, Tensor]: | |
"""Use IoU and matching cost to calculate the dynamic top-k positive | |
targets. Same as SimOTA. | |
Args: | |
cost (Tensor): Cost matrix. | |
pairwise_ious (Tensor): Pairwise iou matrix. | |
num_gt (int): Number of gt. | |
valid_mask (Tensor): Mask for valid bboxes. | |
Returns: | |
tuple: matched ious and gt indexes. | |
""" | |
matching_matrix = torch.zeros_like(cost, dtype=torch.uint8) | |
# select candidate topk ious for dynamic-k calculation | |
candidate_topk = min(self.topk, pairwise_ious.size(0)) | |
topk_ious, _ = torch.topk(pairwise_ious, candidate_topk, dim=0) | |
# calculate dynamic k for each gt | |
dynamic_ks = torch.clamp(topk_ious.sum(0).int(), min=1) | |
for gt_idx in range(num_gt): | |
_, pos_idx = torch.topk( | |
cost[:, gt_idx], k=dynamic_ks[gt_idx], largest=False) | |
matching_matrix[:, gt_idx][pos_idx] = 1 | |
del topk_ious, dynamic_ks, pos_idx | |
prior_match_gt_mask = matching_matrix.sum(1) > 1 | |
if prior_match_gt_mask.sum() > 0: | |
cost_min, cost_argmin = torch.min( | |
cost[prior_match_gt_mask, :], dim=1) | |
matching_matrix[prior_match_gt_mask, :] *= 0 | |
matching_matrix[prior_match_gt_mask, cost_argmin] = 1 | |
# get foreground mask inside box and center prior | |
fg_mask_inboxes = matching_matrix.sum(1) > 0 | |
valid_mask[valid_mask.clone()] = fg_mask_inboxes | |
matched_gt_inds = matching_matrix[fg_mask_inboxes, :].argmax(1) | |
matched_pred_ious = (matching_matrix * | |
pairwise_ious).sum(1)[fg_mask_inboxes] | |
return matched_pred_ious, matched_gt_inds | |