Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Tuple | |
from torch import Tensor | |
from mmdet.registry import MODELS | |
from mmdet.structures import DetDataSample | |
from mmdet.structures.bbox import bbox2roi | |
from mmdet.utils import ConfigType, InstanceList | |
from ..task_modules.samplers import SamplingResult | |
from ..utils import empty_instances, unpack_gt_instances | |
from .standard_roi_head import StandardRoIHead | |
class MultiInstanceRoIHead(StandardRoIHead): | |
"""The roi head for Multi-instance prediction.""" | |
def __init__(self, num_instance: int = 2, *args, **kwargs) -> None: | |
self.num_instance = num_instance | |
super().__init__(*args, **kwargs) | |
def init_bbox_head(self, bbox_roi_extractor: ConfigType, | |
bbox_head: ConfigType) -> None: | |
"""Initialize box head and box roi extractor. | |
Args: | |
bbox_roi_extractor (dict or ConfigDict): Config of box | |
roi extractor. | |
bbox_head (dict or ConfigDict): Config of box in box head. | |
""" | |
self.bbox_roi_extractor = MODELS.build(bbox_roi_extractor) | |
self.bbox_head = MODELS.build(bbox_head) | |
def _bbox_forward(self, x: Tuple[Tensor], rois: Tensor) -> dict: | |
"""Box head forward function used in both training and testing. | |
Args: | |
x (tuple[Tensor]): List of multi-level img features. | |
rois (Tensor): RoIs with the shape (n, 5) where the first | |
column indicates batch id of each RoI. | |
Returns: | |
dict[str, Tensor]: Usually returns a dictionary with keys: | |
- `cls_score` (Tensor): Classification scores. | |
- `bbox_pred` (Tensor): Box energies / deltas. | |
- `cls_score_ref` (Tensor): The cls_score after refine model. | |
- `bbox_pred_ref` (Tensor): The bbox_pred after refine model. | |
- `bbox_feats` (Tensor): Extract bbox RoI features. | |
""" | |
# TODO: a more flexible way to decide which feature maps to use | |
bbox_feats = self.bbox_roi_extractor( | |
x[:self.bbox_roi_extractor.num_inputs], rois) | |
bbox_results = self.bbox_head(bbox_feats) | |
if self.bbox_head.with_refine: | |
bbox_results = dict( | |
cls_score=bbox_results[0], | |
bbox_pred=bbox_results[1], | |
cls_score_ref=bbox_results[2], | |
bbox_pred_ref=bbox_results[3], | |
bbox_feats=bbox_feats) | |
else: | |
bbox_results = dict( | |
cls_score=bbox_results[0], | |
bbox_pred=bbox_results[1], | |
bbox_feats=bbox_feats) | |
return bbox_results | |
def bbox_loss(self, x: Tuple[Tensor], | |
sampling_results: List[SamplingResult]) -> dict: | |
"""Perform forward propagation and loss calculation of the bbox head on | |
the features of the upstream network. | |
Args: | |
x (tuple[Tensor]): List of multi-level img features. | |
sampling_results (list["obj:`SamplingResult`]): Sampling results. | |
Returns: | |
dict[str, Tensor]: Usually returns a dictionary with keys: | |
- `cls_score` (Tensor): Classification scores. | |
- `bbox_pred` (Tensor): Box energies / deltas. | |
- `bbox_feats` (Tensor): Extract bbox RoI features. | |
- `loss_bbox` (dict): A dictionary of bbox loss components. | |
""" | |
rois = bbox2roi([res.priors for res in sampling_results]) | |
bbox_results = self._bbox_forward(x, rois) | |
# If there is a refining process, add refine loss. | |
if 'cls_score_ref' in bbox_results: | |
bbox_loss_and_target = self.bbox_head.loss_and_target( | |
cls_score=bbox_results['cls_score'], | |
bbox_pred=bbox_results['bbox_pred'], | |
rois=rois, | |
sampling_results=sampling_results, | |
rcnn_train_cfg=self.train_cfg) | |
bbox_results.update(loss_bbox=bbox_loss_and_target['loss_bbox']) | |
bbox_loss_and_target_ref = self.bbox_head.loss_and_target( | |
cls_score=bbox_results['cls_score_ref'], | |
bbox_pred=bbox_results['bbox_pred_ref'], | |
rois=rois, | |
sampling_results=sampling_results, | |
rcnn_train_cfg=self.train_cfg) | |
bbox_results['loss_bbox']['loss_rcnn_emd_ref'] = \ | |
bbox_loss_and_target_ref['loss_bbox']['loss_rcnn_emd'] | |
else: | |
bbox_loss_and_target = self.bbox_head.loss_and_target( | |
cls_score=bbox_results['cls_score'], | |
bbox_pred=bbox_results['bbox_pred'], | |
rois=rois, | |
sampling_results=sampling_results, | |
rcnn_train_cfg=self.train_cfg) | |
bbox_results.update(loss_bbox=bbox_loss_and_target['loss_bbox']) | |
return bbox_results | |
def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList, | |
batch_data_samples: List[DetDataSample]) -> dict: | |
"""Perform forward propagation and loss calculation of the detection | |
roi on the features of the upstream network. | |
Args: | |
x (tuple[Tensor]): List of multi-level img features. | |
rpn_results_list (list[:obj:`InstanceData`]): List of region | |
proposals. | |
batch_data_samples (list[:obj:`DetDataSample`]): The batch | |
data samples. It usually includes information such | |
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components | |
""" | |
assert len(rpn_results_list) == len(batch_data_samples) | |
outputs = unpack_gt_instances(batch_data_samples) | |
batch_gt_instances, batch_gt_instances_ignore, _ = outputs | |
sampling_results = [] | |
for i in range(len(batch_data_samples)): | |
# rename rpn_results.bboxes to rpn_results.priors | |
rpn_results = rpn_results_list[i] | |
rpn_results.priors = rpn_results.pop('bboxes') | |
assign_result = self.bbox_assigner.assign( | |
rpn_results, batch_gt_instances[i], | |
batch_gt_instances_ignore[i]) | |
sampling_result = self.bbox_sampler.sample( | |
assign_result, | |
rpn_results, | |
batch_gt_instances[i], | |
batch_gt_instances_ignore=batch_gt_instances_ignore[i]) | |
sampling_results.append(sampling_result) | |
losses = dict() | |
# bbox head loss | |
if self.with_bbox: | |
bbox_results = self.bbox_loss(x, sampling_results) | |
losses.update(bbox_results['loss_bbox']) | |
return losses | |
def predict_bbox(self, | |
x: Tuple[Tensor], | |
batch_img_metas: List[dict], | |
rpn_results_list: InstanceList, | |
rcnn_test_cfg: ConfigType, | |
rescale: bool = False) -> InstanceList: | |
"""Perform forward propagation of the bbox head and predict detection | |
results on the features of the upstream network. | |
Args: | |
x (tuple[Tensor]): Feature maps of all scale level. | |
batch_img_metas (list[dict]): List of image information. | |
rpn_results_list (list[:obj:`InstanceData`]): List of region | |
proposals. | |
rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. | |
rescale (bool): If True, return boxes in original image space. | |
Defaults to False. | |
Returns: | |
list[:obj:`InstanceData`]: Detection results of each image | |
after the post process. | |
Each item usually contains following keys. | |
- scores (Tensor): Classification scores, has a shape | |
(num_instance, ) | |
- labels (Tensor): Labels of bboxes, has a shape | |
(num_instances, ). | |
- bboxes (Tensor): Has a shape (num_instances, 4), | |
the last dimension 4 arrange as (x1, y1, x2, y2). | |
""" | |
proposals = [res.bboxes for res in rpn_results_list] | |
rois = bbox2roi(proposals) | |
if rois.shape[0] == 0: | |
return empty_instances( | |
batch_img_metas, rois.device, task_type='bbox') | |
bbox_results = self._bbox_forward(x, rois) | |
# split batch bbox prediction back to each image | |
if 'cls_score_ref' in bbox_results: | |
cls_scores = bbox_results['cls_score_ref'] | |
bbox_preds = bbox_results['bbox_pred_ref'] | |
else: | |
cls_scores = bbox_results['cls_score'] | |
bbox_preds = bbox_results['bbox_pred'] | |
num_proposals_per_img = tuple(len(p) for p in proposals) | |
rois = rois.split(num_proposals_per_img, 0) | |
cls_scores = cls_scores.split(num_proposals_per_img, 0) | |
if bbox_preds is not None: | |
bbox_preds = bbox_preds.split(num_proposals_per_img, 0) | |
else: | |
bbox_preds = (None, ) * len(proposals) | |
result_list = self.bbox_head.predict_by_feat( | |
rois=rois, | |
cls_scores=cls_scores, | |
bbox_preds=bbox_preds, | |
batch_img_metas=batch_img_metas, | |
rcnn_test_cfg=rcnn_test_cfg, | |
rescale=rescale) | |
return result_list | |