KyanChen's picture
init
f549064
raw
history blame
6.74 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List
import torch
import torch.nn as nn
from mmengine.config import ConfigDict
from torch import Tensor
from mmdet.models.task_modules import SamplingResult
from mmdet.registry import MODELS
from mmdet.utils import ConfigType, InstanceList, OptConfigType, reduce_mean
from .fcn_mask_head import FCNMaskHead
@MODELS.register_module()
class DynamicMaskHead(FCNMaskHead):
r"""Dynamic Mask Head for
`Instances as Queries <http://arxiv.org/abs/2105.01928>`_
Args:
num_convs (int): Number of convolution layer.
Defaults to 4.
roi_feat_size (int): The output size of RoI extractor,
Defaults to 14.
in_channels (int): Input feature channels.
Defaults to 256.
conv_kernel_size (int): Kernel size of convolution layers.
Defaults to 3.
conv_out_channels (int): Output channels of convolution layers.
Defaults to 256.
num_classes (int): Number of classes.
Defaults to 80
class_agnostic (int): Whether generate class agnostic prediction.
Defaults to False.
dropout (float): Probability of drop the channel.
Defaults to 0.0
upsample_cfg (:obj:`ConfigDict` or dict): The config for
upsample layer.
conv_cfg (:obj:`ConfigDict` or dict, optional): The convolution
layer config.
norm_cfg (:obj:`ConfigDict` or dict, optional): The norm layer config.
dynamic_conv_cfg (:obj:`ConfigDict` or dict): The dynamic convolution
layer config.
loss_mask (:obj:`ConfigDict` or dict): The config for mask loss.
"""
def __init__(self,
num_convs: int = 4,
roi_feat_size: int = 14,
in_channels: int = 256,
conv_kernel_size: int = 3,
conv_out_channels: int = 256,
num_classes: int = 80,
class_agnostic: bool = False,
upsample_cfg: ConfigType = dict(
type='deconv', scale_factor=2),
conv_cfg: OptConfigType = None,
norm_cfg: OptConfigType = None,
dynamic_conv_cfg: ConfigType = dict(
type='DynamicConv',
in_channels=256,
feat_channels=64,
out_channels=256,
input_feat_shape=14,
with_proj=False,
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN')),
loss_mask: ConfigType = dict(
type='DiceLoss', loss_weight=8.0),
**kwargs) -> None:
super().__init__(
num_convs=num_convs,
roi_feat_size=roi_feat_size,
in_channels=in_channels,
conv_kernel_size=conv_kernel_size,
conv_out_channels=conv_out_channels,
num_classes=num_classes,
class_agnostic=class_agnostic,
upsample_cfg=upsample_cfg,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
loss_mask=loss_mask,
**kwargs)
assert class_agnostic is False, \
'DynamicMaskHead only support class_agnostic=False'
self.fp16_enabled = False
self.instance_interactive_conv = MODELS.build(dynamic_conv_cfg)
def init_weights(self) -> None:
"""Use xavier initialization for all weight parameter and set
classification head bias as a specific value when use focal loss."""
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
nn.init.constant_(self.conv_logits.bias, 0.)
def forward(self, roi_feat: Tensor, proposal_feat: Tensor) -> Tensor:
"""Forward function of DynamicMaskHead.
Args:
roi_feat (Tensor): Roi-pooling features with shape
(batch_size*num_proposals, feature_dimensions,
pooling_h , pooling_w).
proposal_feat (Tensor): Intermediate feature get from
diihead in last stage, has shape
(batch_size*num_proposals, feature_dimensions)
Returns:
mask_preds (Tensor): Predicted foreground masks with shape
(batch_size*num_proposals, num_classes, pooling_h*2, pooling_w*2).
"""
proposal_feat = proposal_feat.reshape(-1, self.in_channels)
proposal_feat_iic = self.instance_interactive_conv(
proposal_feat, roi_feat)
x = proposal_feat_iic.permute(0, 2, 1).reshape(roi_feat.size())
for conv in self.convs:
x = conv(x)
if self.upsample is not None:
x = self.upsample(x)
if self.upsample_method == 'deconv':
x = self.relu(x)
mask_preds = self.conv_logits(x)
return mask_preds
def loss_and_target(self, mask_preds: Tensor,
sampling_results: List[SamplingResult],
batch_gt_instances: InstanceList,
rcnn_train_cfg: ConfigDict) -> dict:
"""Calculate the loss based on the features extracted by the mask head.
Args:
mask_preds (Tensor): Predicted foreground masks, has shape
(num_pos, num_classes, h, w).
sampling_results (List[obj:SamplingResult]): Assign results of
all images in a batch after sampling.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes``, ``labels``, and
``masks`` attributes.
rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN.
Returns:
dict: A dictionary of loss and targets components.
"""
mask_targets = self.get_targets(
sampling_results=sampling_results,
batch_gt_instances=batch_gt_instances,
rcnn_train_cfg=rcnn_train_cfg)
pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results])
num_pos = pos_labels.new_ones(pos_labels.size()).float().sum()
avg_factor = torch.clamp(reduce_mean(num_pos), min=1.).item()
loss = dict()
if mask_preds.size(0) == 0:
loss_mask = mask_preds.sum()
else:
loss_mask = self.loss_mask(
mask_preds[torch.arange(num_pos).long(), pos_labels,
...].sigmoid(),
mask_targets,
avg_factor=avg_factor)
loss['loss_mask'] = loss_mask
return dict(loss_mask=loss, mask_targets=mask_targets)