Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Optional, Tuple | |
import torch | |
from torch import Tensor | |
from mmdet.registry import MODELS | |
from mmdet.structures import SampleList | |
from mmdet.structures.bbox import bbox2roi | |
from mmdet.utils import ConfigType, InstanceList | |
from ..task_modules.samplers import SamplingResult | |
from ..utils.misc import unpack_gt_instances | |
from .standard_roi_head import StandardRoIHead | |
class GridRoIHead(StandardRoIHead): | |
"""Implementation of `Grid RoI Head <https://arxiv.org/abs/1811.12030>`_ | |
Args: | |
grid_roi_extractor (:obj:`ConfigDict` or dict): Config of | |
roi extractor. | |
grid_head (:obj:`ConfigDict` or dict): Config of grid head | |
""" | |
def __init__(self, grid_roi_extractor: ConfigType, grid_head: ConfigType, | |
**kwargs) -> None: | |
assert grid_head is not None | |
super().__init__(**kwargs) | |
if grid_roi_extractor is not None: | |
self.grid_roi_extractor = MODELS.build(grid_roi_extractor) | |
self.share_roi_extractor = False | |
else: | |
self.share_roi_extractor = True | |
self.grid_roi_extractor = self.bbox_roi_extractor | |
self.grid_head = MODELS.build(grid_head) | |
def _random_jitter(self, | |
sampling_results: List[SamplingResult], | |
batch_img_metas: List[dict], | |
amplitude: float = 0.15) -> List[SamplingResult]: | |
"""Ramdom jitter positive proposals for training. | |
Args: | |
sampling_results (List[obj:SamplingResult]): Assign results of | |
all images in a batch after sampling. | |
batch_img_metas (list[dict]): List of image information. | |
amplitude (float): Amplitude of random offset. Defaults to 0.15. | |
Returns: | |
list[obj:SamplingResult]: SamplingResults after random jittering. | |
""" | |
for sampling_result, img_meta in zip(sampling_results, | |
batch_img_metas): | |
bboxes = sampling_result.pos_priors | |
random_offsets = bboxes.new_empty(bboxes.shape[0], 4).uniform_( | |
-amplitude, amplitude) | |
# before jittering | |
cxcy = (bboxes[:, 2:4] + bboxes[:, :2]) / 2 | |
wh = (bboxes[:, 2:4] - bboxes[:, :2]).abs() | |
# after jittering | |
new_cxcy = cxcy + wh * random_offsets[:, :2] | |
new_wh = wh * (1 + random_offsets[:, 2:]) | |
# xywh to xyxy | |
new_x1y1 = (new_cxcy - new_wh / 2) | |
new_x2y2 = (new_cxcy + new_wh / 2) | |
new_bboxes = torch.cat([new_x1y1, new_x2y2], dim=1) | |
# clip bboxes | |
max_shape = img_meta['img_shape'] | |
if max_shape is not None: | |
new_bboxes[:, 0::2].clamp_(min=0, max=max_shape[1] - 1) | |
new_bboxes[:, 1::2].clamp_(min=0, max=max_shape[0] - 1) | |
sampling_result.pos_priors = new_bboxes | |
return sampling_results | |
# TODO: Forward is incorrect and need to refactor. | |
def forward(self, | |
x: Tuple[Tensor], | |
rpn_results_list: InstanceList, | |
batch_data_samples: SampleList = None) -> tuple: | |
"""Network forward process. Usually includes backbone, neck and head | |
forward without any post-processing. | |
Args: | |
x (Tuple[Tensor]): Multi-level features that may have different | |
resolutions. | |
rpn_results_list (list[:obj:`InstanceData`]): List of region | |
proposals. | |
batch_data_samples (list[:obj:`DetDataSample`]): Each item contains | |
the meta information of each image and corresponding | |
annotations. | |
Returns | |
tuple: A tuple of features from ``bbox_head`` and ``mask_head`` | |
forward. | |
""" | |
results = () | |
proposals = [rpn_results.bboxes for rpn_results in rpn_results_list] | |
rois = bbox2roi(proposals) | |
# bbox head | |
if self.with_bbox: | |
bbox_results = self._bbox_forward(x, rois) | |
results = results + (bbox_results['cls_score'], ) | |
if self.bbox_head.with_reg: | |
results = results + (bbox_results['bbox_pred'], ) | |
# grid head | |
grid_rois = rois[:100] | |
grid_feats = self.grid_roi_extractor( | |
x[:len(self.grid_roi_extractor.featmap_strides)], grid_rois) | |
if self.with_shared_head: | |
grid_feats = self.shared_head(grid_feats) | |
self.grid_head.test_mode = True | |
grid_preds = self.grid_head(grid_feats) | |
results = results + (grid_preds, ) | |
# mask head | |
if self.with_mask: | |
mask_rois = rois[:100] | |
mask_results = self._mask_forward(x, mask_rois) | |
results = results + (mask_results['mask_preds'], ) | |
return results | |
def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList, | |
batch_data_samples: SampleList, **kwargs) -> dict: | |
"""Perform forward propagation and loss calculation of the detection | |
roi on the features of the upstream network. | |
Args: | |
x (tuple[Tensor]): List of multi-level img features. | |
rpn_results_list (list[:obj:`InstanceData`]): List of region | |
proposals. | |
batch_data_samples (list[:obj:`DetDataSample`]): The batch | |
data samples. It usually includes information such | |
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components | |
""" | |
assert len(rpn_results_list) == len(batch_data_samples) | |
outputs = unpack_gt_instances(batch_data_samples) | |
(batch_gt_instances, batch_gt_instances_ignore, | |
batch_img_metas) = outputs | |
# assign gts and sample proposals | |
num_imgs = len(batch_data_samples) | |
sampling_results = [] | |
for i in range(num_imgs): | |
# rename rpn_results.bboxes to rpn_results.priors | |
rpn_results = rpn_results_list[i] | |
rpn_results.priors = rpn_results.pop('bboxes') | |
assign_result = self.bbox_assigner.assign( | |
rpn_results, batch_gt_instances[i], | |
batch_gt_instances_ignore[i]) | |
sampling_result = self.bbox_sampler.sample( | |
assign_result, | |
rpn_results, | |
batch_gt_instances[i], | |
feats=[lvl_feat[i][None] for lvl_feat in x]) | |
sampling_results.append(sampling_result) | |
losses = dict() | |
# bbox head loss | |
if self.with_bbox: | |
bbox_results = self.bbox_loss(x, sampling_results, batch_img_metas) | |
losses.update(bbox_results['loss_bbox']) | |
# mask head forward and loss | |
if self.with_mask: | |
mask_results = self.mask_loss(x, sampling_results, | |
bbox_results['bbox_feats'], | |
batch_gt_instances) | |
losses.update(mask_results['loss_mask']) | |
return losses | |
def bbox_loss(self, | |
x: Tuple[Tensor], | |
sampling_results: List[SamplingResult], | |
batch_img_metas: Optional[List[dict]] = None) -> dict: | |
"""Perform forward propagation and loss calculation of the bbox head on | |
the features of the upstream network. | |
Args: | |
x (tuple[Tensor]): List of multi-level img features. | |
sampling_results (list[:obj:`SamplingResult`]): Sampling results. | |
batch_img_metas (list[dict], optional): Meta information of each | |
image, e.g., image size, scaling factor, etc. | |
Returns: | |
dict[str, Tensor]: Usually returns a dictionary with keys: | |
- `cls_score` (Tensor): Classification scores. | |
- `bbox_pred` (Tensor): Box energies / deltas. | |
- `bbox_feats` (Tensor): Extract bbox RoI features. | |
- `loss_bbox` (dict): A dictionary of bbox loss components. | |
""" | |
assert batch_img_metas is not None | |
bbox_results = super().bbox_loss(x, sampling_results) | |
# Grid head forward and loss | |
sampling_results = self._random_jitter(sampling_results, | |
batch_img_metas) | |
pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results]) | |
# GN in head does not support zero shape input | |
if pos_rois.shape[0] == 0: | |
return bbox_results | |
grid_feats = self.grid_roi_extractor( | |
x[:self.grid_roi_extractor.num_inputs], pos_rois) | |
if self.with_shared_head: | |
grid_feats = self.shared_head(grid_feats) | |
# Accelerate training | |
max_sample_num_grid = self.train_cfg.get('max_num_grid', 192) | |
sample_idx = torch.randperm( | |
grid_feats.shape[0])[:min(grid_feats.shape[0], max_sample_num_grid | |
)] | |
grid_feats = grid_feats[sample_idx] | |
grid_pred = self.grid_head(grid_feats) | |
loss_grid = self.grid_head.loss(grid_pred, sample_idx, | |
sampling_results, self.train_cfg) | |
bbox_results['loss_bbox'].update(loss_grid) | |
return bbox_results | |
def predict_bbox(self, | |
x: Tuple[Tensor], | |
batch_img_metas: List[dict], | |
rpn_results_list: InstanceList, | |
rcnn_test_cfg: ConfigType, | |
rescale: bool = False) -> InstanceList: | |
"""Perform forward propagation of the bbox head and predict detection | |
results on the features of the upstream network. | |
Args: | |
x (tuple[Tensor]): Feature maps of all scale level. | |
batch_img_metas (list[dict]): List of image information. | |
rpn_results_list (list[:obj:`InstanceData`]): List of region | |
proposals. | |
rcnn_test_cfg (:obj:`ConfigDict`): `test_cfg` of R-CNN. | |
rescale (bool): If True, return boxes in original image space. | |
Defaults to False. | |
Returns: | |
list[:obj:`InstanceData`]: Detection results of each image | |
after the post process. | |
Each item usually contains following keys. | |
- scores (Tensor): Classification scores, has a shape \ | |
(num_instance, ) | |
- labels (Tensor): Labels of bboxes, has a shape (num_instances, ). | |
- bboxes (Tensor): Has a shape (num_instances, 4), the last \ | |
dimension 4 arrange as (x1, y1, x2, y2). | |
""" | |
results_list = super().predict_bbox( | |
x, | |
batch_img_metas=batch_img_metas, | |
rpn_results_list=rpn_results_list, | |
rcnn_test_cfg=rcnn_test_cfg, | |
rescale=False) | |
grid_rois = bbox2roi([res.bboxes for res in results_list]) | |
if grid_rois.shape[0] != 0: | |
grid_feats = self.grid_roi_extractor( | |
x[:len(self.grid_roi_extractor.featmap_strides)], grid_rois) | |
if self.with_shared_head: | |
grid_feats = self.shared_head(grid_feats) | |
self.grid_head.test_mode = True | |
grid_preds = self.grid_head(grid_feats) | |
results_list = self.grid_head.predict_by_feat( | |
grid_preds=grid_preds, | |
results_list=results_list, | |
batch_img_metas=batch_img_metas, | |
rescale=rescale) | |
return results_list | |