ai-photo-gallery / mmdet /models /roi_heads /cascade_roi_head.py
KyanChen's picture
init
f549064
raw
history blame
24.3 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Sequence, Tuple, Union
import torch
import torch.nn as nn
from mmengine.model import ModuleList
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.models.task_modules.samplers import SamplingResult
from mmdet.models.test_time_augs import merge_aug_masks
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures import SampleList
from mmdet.structures.bbox import bbox2roi, get_box_tensor
from mmdet.utils import (ConfigType, InstanceList, MultiConfig, OptConfigType,
OptMultiConfig)
from ..utils.misc import empty_instances, unpack_gt_instances
from .base_roi_head import BaseRoIHead
@MODELS.register_module()
class CascadeRoIHead(BaseRoIHead):
"""Cascade roi head including one bbox head and one mask head.
https://arxiv.org/abs/1712.00726
"""
def __init__(self,
num_stages: int,
stage_loss_weights: Union[List[float], Tuple[float]],
bbox_roi_extractor: OptMultiConfig = None,
bbox_head: OptMultiConfig = None,
mask_roi_extractor: OptMultiConfig = None,
mask_head: OptMultiConfig = None,
shared_head: OptConfigType = None,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
init_cfg: OptMultiConfig = None) -> None:
assert bbox_roi_extractor is not None
assert bbox_head is not None
assert shared_head is None, \
'Shared head is not supported in Cascade RCNN anymore'
self.num_stages = num_stages
self.stage_loss_weights = stage_loss_weights
super().__init__(
bbox_roi_extractor=bbox_roi_extractor,
bbox_head=bbox_head,
mask_roi_extractor=mask_roi_extractor,
mask_head=mask_head,
shared_head=shared_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
init_cfg=init_cfg)
def init_bbox_head(self, bbox_roi_extractor: MultiConfig,
bbox_head: MultiConfig) -> None:
"""Initialize box head and box roi extractor.
Args:
bbox_roi_extractor (:obj:`ConfigDict`, dict or list):
Config of box roi extractor.
bbox_head (:obj:`ConfigDict`, dict or list): Config
of box in box head.
"""
self.bbox_roi_extractor = ModuleList()
self.bbox_head = ModuleList()
if not isinstance(bbox_roi_extractor, list):
bbox_roi_extractor = [
bbox_roi_extractor for _ in range(self.num_stages)
]
if not isinstance(bbox_head, list):
bbox_head = [bbox_head for _ in range(self.num_stages)]
assert len(bbox_roi_extractor) == len(bbox_head) == self.num_stages
for roi_extractor, head in zip(bbox_roi_extractor, bbox_head):
self.bbox_roi_extractor.append(MODELS.build(roi_extractor))
self.bbox_head.append(MODELS.build(head))
def init_mask_head(self, mask_roi_extractor: MultiConfig,
mask_head: MultiConfig) -> None:
"""Initialize mask head and mask roi extractor.
Args:
mask_head (dict): Config of mask in mask head.
mask_roi_extractor (:obj:`ConfigDict`, dict or list):
Config of mask roi extractor.
"""
self.mask_head = nn.ModuleList()
if not isinstance(mask_head, list):
mask_head = [mask_head for _ in range(self.num_stages)]
assert len(mask_head) == self.num_stages
for head in mask_head:
self.mask_head.append(MODELS.build(head))
if mask_roi_extractor is not None:
self.share_roi_extractor = False
self.mask_roi_extractor = ModuleList()
if not isinstance(mask_roi_extractor, list):
mask_roi_extractor = [
mask_roi_extractor for _ in range(self.num_stages)
]
assert len(mask_roi_extractor) == self.num_stages
for roi_extractor in mask_roi_extractor:
self.mask_roi_extractor.append(MODELS.build(roi_extractor))
else:
self.share_roi_extractor = True
self.mask_roi_extractor = self.bbox_roi_extractor
def init_assigner_sampler(self) -> None:
"""Initialize assigner and sampler for each stage."""
self.bbox_assigner = []
self.bbox_sampler = []
if self.train_cfg is not None:
for idx, rcnn_train_cfg in enumerate(self.train_cfg):
self.bbox_assigner.append(
TASK_UTILS.build(rcnn_train_cfg.assigner))
self.current_stage = idx
self.bbox_sampler.append(
TASK_UTILS.build(
rcnn_train_cfg.sampler,
default_args=dict(context=self)))
def _bbox_forward(self, stage: int, x: Tuple[Tensor],
rois: Tensor) -> dict:
"""Box head forward function used in both training and testing.
Args:
stage (int): The current stage in Cascade RoI Head.
x (tuple[Tensor]): List of multi-level img features.
rois (Tensor): RoIs with the shape (n, 5) where the first
column indicates batch id of each RoI.
Returns:
dict[str, Tensor]: Usually returns a dictionary with keys:
- `cls_score` (Tensor): Classification scores.
- `bbox_pred` (Tensor): Box energies / deltas.
- `bbox_feats` (Tensor): Extract bbox RoI features.
"""
bbox_roi_extractor = self.bbox_roi_extractor[stage]
bbox_head = self.bbox_head[stage]
bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs],
rois)
# do not support caffe_c4 model anymore
cls_score, bbox_pred = bbox_head(bbox_feats)
bbox_results = dict(
cls_score=cls_score, bbox_pred=bbox_pred, bbox_feats=bbox_feats)
return bbox_results
def bbox_loss(self, stage: int, x: Tuple[Tensor],
sampling_results: List[SamplingResult]) -> dict:
"""Run forward function and calculate loss for box head in training.
Args:
stage (int): The current stage in Cascade RoI Head.
x (tuple[Tensor]): List of multi-level img features.
sampling_results (list["obj:`SamplingResult`]): Sampling results.
Returns:
dict: Usually returns a dictionary with keys:
- `cls_score` (Tensor): Classification scores.
- `bbox_pred` (Tensor): Box energies / deltas.
- `bbox_feats` (Tensor): Extract bbox RoI features.
- `loss_bbox` (dict): A dictionary of bbox loss components.
- `rois` (Tensor): RoIs with the shape (n, 5) where the first
column indicates batch id of each RoI.
- `bbox_targets` (tuple): Ground truth for proposals in a
single image. Containing the following list of Tensors:
(labels, label_weights, bbox_targets, bbox_weights)
"""
bbox_head = self.bbox_head[stage]
rois = bbox2roi([res.priors for res in sampling_results])
bbox_results = self._bbox_forward(stage, x, rois)
bbox_results.update(rois=rois)
bbox_loss_and_target = bbox_head.loss_and_target(
cls_score=bbox_results['cls_score'],
bbox_pred=bbox_results['bbox_pred'],
rois=rois,
sampling_results=sampling_results,
rcnn_train_cfg=self.train_cfg[stage])
bbox_results.update(bbox_loss_and_target)
return bbox_results
def _mask_forward(self, stage: int, x: Tuple[Tensor],
rois: Tensor) -> dict:
"""Mask head forward function used in both training and testing.
Args:
stage (int): The current stage in Cascade RoI Head.
x (tuple[Tensor]): Tuple of multi-level img features.
rois (Tensor): RoIs with the shape (n, 5) where the first
column indicates batch id of each RoI.
Returns:
dict: Usually returns a dictionary with keys:
- `mask_preds` (Tensor): Mask prediction.
"""
mask_roi_extractor = self.mask_roi_extractor[stage]
mask_head = self.mask_head[stage]
mask_feats = mask_roi_extractor(x[:mask_roi_extractor.num_inputs],
rois)
# do not support caffe_c4 model anymore
mask_preds = mask_head(mask_feats)
mask_results = dict(mask_preds=mask_preds)
return mask_results
def mask_loss(self, stage: int, x: Tuple[Tensor],
sampling_results: List[SamplingResult],
batch_gt_instances: InstanceList) -> dict:
"""Run forward function and calculate loss for mask head in training.
Args:
stage (int): The current stage in Cascade RoI Head.
x (tuple[Tensor]): Tuple of multi-level img features.
sampling_results (list["obj:`SamplingResult`]): Sampling results.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes``, ``labels``, and
``masks`` attributes.
Returns:
dict: Usually returns a dictionary with keys:
- `mask_preds` (Tensor): Mask prediction.
- `loss_mask` (dict): A dictionary of mask loss components.
"""
pos_rois = bbox2roi([res.pos_priors for res in sampling_results])
mask_results = self._mask_forward(stage, x, pos_rois)
mask_head = self.mask_head[stage]
mask_loss_and_target = mask_head.loss_and_target(
mask_preds=mask_results['mask_preds'],
sampling_results=sampling_results,
batch_gt_instances=batch_gt_instances,
rcnn_train_cfg=self.train_cfg[stage])
mask_results.update(mask_loss_and_target)
return mask_results
def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
batch_data_samples: SampleList) -> dict:
"""Perform forward propagation and loss calculation of the detection
roi on the features of the upstream network.
Args:
x (tuple[Tensor]): List of multi-level img features.
rpn_results_list (list[:obj:`InstanceData`]): List of region
proposals.
batch_data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Returns:
dict[str, Tensor]: A dictionary of loss components
"""
# TODO: May add a new function in baseroihead
assert len(rpn_results_list) == len(batch_data_samples)
outputs = unpack_gt_instances(batch_data_samples)
batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \
= outputs
num_imgs = len(batch_data_samples)
losses = dict()
results_list = rpn_results_list
for stage in range(self.num_stages):
self.current_stage = stage
stage_loss_weight = self.stage_loss_weights[stage]
# assign gts and sample proposals
sampling_results = []
if self.with_bbox or self.with_mask:
bbox_assigner = self.bbox_assigner[stage]
bbox_sampler = self.bbox_sampler[stage]
for i in range(num_imgs):
results = results_list[i]
# rename rpn_results.bboxes to rpn_results.priors
results.priors = results.pop('bboxes')
assign_result = bbox_assigner.assign(
results, batch_gt_instances[i],
batch_gt_instances_ignore[i])
sampling_result = bbox_sampler.sample(
assign_result,
results,
batch_gt_instances[i],
feats=[lvl_feat[i][None] for lvl_feat in x])
sampling_results.append(sampling_result)
# bbox head forward and loss
bbox_results = self.bbox_loss(stage, x, sampling_results)
for name, value in bbox_results['loss_bbox'].items():
losses[f's{stage}.{name}'] = (
value * stage_loss_weight if 'loss' in name else value)
# mask head forward and loss
if self.with_mask:
mask_results = self.mask_loss(stage, x, sampling_results,
batch_gt_instances)
for name, value in mask_results['loss_mask'].items():
losses[f's{stage}.{name}'] = (
value * stage_loss_weight if 'loss' in name else value)
# refine bboxes
if stage < self.num_stages - 1:
bbox_head = self.bbox_head[stage]
with torch.no_grad():
results_list = bbox_head.refine_bboxes(
sampling_results, bbox_results, batch_img_metas)
# Empty proposal
if results_list is None:
break
return losses
def predict_bbox(self,
x: Tuple[Tensor],
batch_img_metas: List[dict],
rpn_results_list: InstanceList,
rcnn_test_cfg: ConfigType,
rescale: bool = False,
**kwargs) -> InstanceList:
"""Perform forward propagation of the bbox head and predict detection
results on the features of the upstream network.
Args:
x (tuple[Tensor]): Feature maps of all scale level.
batch_img_metas (list[dict]): List of image information.
rpn_results_list (list[:obj:`InstanceData`]): List of region
proposals.
rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
Returns:
list[:obj:`InstanceData`]: Detection results of each image
after the post process.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
proposals = [res.bboxes for res in rpn_results_list]
num_proposals_per_img = tuple(len(p) for p in proposals)
rois = bbox2roi(proposals)
if rois.shape[0] == 0:
return empty_instances(
batch_img_metas,
rois.device,
task_type='bbox',
box_type=self.bbox_head[-1].predict_box_type,
num_classes=self.bbox_head[-1].num_classes,
score_per_cls=rcnn_test_cfg is None)
rois, cls_scores, bbox_preds = self._refine_roi(
x=x,
rois=rois,
batch_img_metas=batch_img_metas,
num_proposals_per_img=num_proposals_per_img,
**kwargs)
results_list = self.bbox_head[-1].predict_by_feat(
rois=rois,
cls_scores=cls_scores,
bbox_preds=bbox_preds,
batch_img_metas=batch_img_metas,
rescale=rescale,
rcnn_test_cfg=rcnn_test_cfg)
return results_list
def predict_mask(self,
x: Tuple[Tensor],
batch_img_metas: List[dict],
results_list: List[InstanceData],
rescale: bool = False) -> List[InstanceData]:
"""Perform forward propagation of the mask head and predict detection
results on the features of the upstream network.
Args:
x (tuple[Tensor]): Feature maps of all scale level.
batch_img_metas (list[dict]): List of image information.
results_list (list[:obj:`InstanceData`]): Detection results of
each image.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
Returns:
list[:obj:`InstanceData`]: Detection results of each image
after the post process.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
- masks (Tensor): Has a shape (num_instances, H, W).
"""
bboxes = [res.bboxes for res in results_list]
mask_rois = bbox2roi(bboxes)
if mask_rois.shape[0] == 0:
results_list = empty_instances(
batch_img_metas,
mask_rois.device,
task_type='mask',
instance_results=results_list,
mask_thr_binary=self.test_cfg.mask_thr_binary)
return results_list
num_mask_rois_per_img = [len(res) for res in results_list]
aug_masks = []
for stage in range(self.num_stages):
mask_results = self._mask_forward(stage, x, mask_rois)
mask_preds = mask_results['mask_preds']
# split batch mask prediction back to each image
mask_preds = mask_preds.split(num_mask_rois_per_img, 0)
aug_masks.append([m.sigmoid().detach() for m in mask_preds])
merged_masks = []
for i in range(len(batch_img_metas)):
aug_mask = [mask[i] for mask in aug_masks]
merged_mask = merge_aug_masks(aug_mask, batch_img_metas[i])
merged_masks.append(merged_mask)
results_list = self.mask_head[-1].predict_by_feat(
mask_preds=merged_masks,
results_list=results_list,
batch_img_metas=batch_img_metas,
rcnn_test_cfg=self.test_cfg,
rescale=rescale,
activate_map=True)
return results_list
def _refine_roi(self, x: Tuple[Tensor], rois: Tensor,
batch_img_metas: List[dict],
num_proposals_per_img: Sequence[int], **kwargs) -> tuple:
"""Multi-stage refinement of RoI.
Args:
x (tuple[Tensor]): List of multi-level img features.
rois (Tensor): shape (n, 5), [batch_ind, x1, y1, x2, y2]
batch_img_metas (list[dict]): List of image information.
num_proposals_per_img (sequence[int]): number of proposals
in each image.
Returns:
tuple:
- rois (Tensor): Refined RoI.
- cls_scores (list[Tensor]): Average predicted
cls score per image.
- bbox_preds (list[Tensor]): Bbox branch predictions
for the last stage of per image.
"""
# "ms" in variable names means multi-stage
ms_scores = []
for stage in range(self.num_stages):
bbox_results = self._bbox_forward(
stage=stage, x=x, rois=rois, **kwargs)
# split batch bbox prediction back to each image
cls_scores = bbox_results['cls_score']
bbox_preds = bbox_results['bbox_pred']
rois = rois.split(num_proposals_per_img, 0)
cls_scores = cls_scores.split(num_proposals_per_img, 0)
ms_scores.append(cls_scores)
# some detector with_reg is False, bbox_preds will be None
if bbox_preds is not None:
# TODO move this to a sabl_roi_head
# the bbox prediction of some detectors like SABL is not Tensor
if isinstance(bbox_preds, torch.Tensor):
bbox_preds = bbox_preds.split(num_proposals_per_img, 0)
else:
bbox_preds = self.bbox_head[stage].bbox_pred_split(
bbox_preds, num_proposals_per_img)
else:
bbox_preds = (None, ) * len(batch_img_metas)
if stage < self.num_stages - 1:
bbox_head = self.bbox_head[stage]
if bbox_head.custom_activation:
cls_scores = [
bbox_head.loss_cls.get_activation(s)
for s in cls_scores
]
refine_rois_list = []
for i in range(len(batch_img_metas)):
if rois[i].shape[0] > 0:
bbox_label = cls_scores[i][:, :-1].argmax(dim=1)
# Refactor `bbox_head.regress_by_class` to only accept
# box tensor without img_idx concatenated.
refined_bboxes = bbox_head.regress_by_class(
rois[i][:, 1:], bbox_label, bbox_preds[i],
batch_img_metas[i])
refined_bboxes = get_box_tensor(refined_bboxes)
refined_rois = torch.cat(
[rois[i][:, [0]], refined_bboxes], dim=1)
refine_rois_list.append(refined_rois)
rois = torch.cat(refine_rois_list)
# average scores of each image by stages
cls_scores = [
sum([score[i] for score in ms_scores]) / float(len(ms_scores))
for i in range(len(batch_img_metas))
]
return rois, cls_scores, bbox_preds
def forward(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
batch_data_samples: SampleList) -> tuple:
"""Network forward process. Usually includes backbone, neck and head
forward without any post-processing.
Args:
x (List[Tensor]): Multi-level features that may have different
resolutions.
rpn_results_list (list[:obj:`InstanceData`]): List of region
proposals.
batch_data_samples (list[:obj:`DetDataSample`]): Each item contains
the meta information of each image and corresponding
annotations.
Returns
tuple: A tuple of features from ``bbox_head`` and ``mask_head``
forward.
"""
results = ()
batch_img_metas = [
data_samples.metainfo for data_samples in batch_data_samples
]
proposals = [rpn_results.bboxes for rpn_results in rpn_results_list]
num_proposals_per_img = tuple(len(p) for p in proposals)
rois = bbox2roi(proposals)
# bbox head
if self.with_bbox:
rois, cls_scores, bbox_preds = self._refine_roi(
x, rois, batch_img_metas, num_proposals_per_img)
results = results + (cls_scores, bbox_preds)
# mask head
if self.with_mask:
aug_masks = []
rois = torch.cat(rois)
for stage in range(self.num_stages):
mask_results = self._mask_forward(stage, x, rois)
mask_preds = mask_results['mask_preds']
mask_preds = mask_preds.split(num_proposals_per_img, 0)
aug_masks.append([m.sigmoid().detach() for m in mask_preds])
merged_masks = []
for i in range(len(batch_img_metas)):
aug_mask = [mask[i] for mask in aug_masks]
merged_mask = merge_aug_masks(aug_mask, batch_img_metas[i])
merged_masks.append(merged_mask)
results = results + (merged_masks, )
return results