Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
import torch | |
import torch.nn as nn | |
from mmengine.model import BaseModule | |
from torch import Tensor | |
from mmdet.registry import MODELS | |
from mmdet.utils import MultiConfig, OptMultiConfig | |
class SinePositionalEncoding(BaseModule): | |
"""Position encoding with sine and cosine functions. | |
See `End-to-End Object Detection with Transformers | |
<https://arxiv.org/pdf/2005.12872>`_ for details. | |
Args: | |
num_feats (int): The feature dimension for each position | |
along x-axis or y-axis. Note the final returned dimension | |
for each position is 2 times of this value. | |
temperature (int, optional): The temperature used for scaling | |
the position embedding. Defaults to 10000. | |
normalize (bool, optional): Whether to normalize the position | |
embedding. Defaults to False. | |
scale (float, optional): A scale factor that scales the position | |
embedding. The scale will be used only when `normalize` is True. | |
Defaults to 2*pi. | |
eps (float, optional): A value added to the denominator for | |
numerical stability. Defaults to 1e-6. | |
offset (float): offset add to embed when do the normalization. | |
Defaults to 0. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
Defaults to None | |
""" | |
def __init__(self, | |
num_feats: int, | |
temperature: int = 10000, | |
normalize: bool = False, | |
scale: float = 2 * math.pi, | |
eps: float = 1e-6, | |
offset: float = 0., | |
init_cfg: OptMultiConfig = None) -> None: | |
super().__init__(init_cfg=init_cfg) | |
if normalize: | |
assert isinstance(scale, (float, int)), 'when normalize is set,' \ | |
'scale should be provided and in float or int type, ' \ | |
f'found {type(scale)}' | |
self.num_feats = num_feats | |
self.temperature = temperature | |
self.normalize = normalize | |
self.scale = scale | |
self.eps = eps | |
self.offset = offset | |
def forward(self, mask: Tensor) -> Tensor: | |
"""Forward function for `SinePositionalEncoding`. | |
Args: | |
mask (Tensor): ByteTensor mask. Non-zero values representing | |
ignored positions, while zero values means valid positions | |
for this image. Shape [bs, h, w]. | |
Returns: | |
pos (Tensor): Returned position embedding with shape | |
[bs, num_feats*2, h, w]. | |
""" | |
# For convenience of exporting to ONNX, it's required to convert | |
# `masks` from bool to int. | |
mask = mask.to(torch.int) | |
not_mask = 1 - mask # logical_not | |
y_embed = not_mask.cumsum(1, dtype=torch.float32) | |
x_embed = not_mask.cumsum(2, dtype=torch.float32) | |
if self.normalize: | |
y_embed = (y_embed + self.offset) / \ | |
(y_embed[:, -1:, :] + self.eps) * self.scale | |
x_embed = (x_embed + self.offset) / \ | |
(x_embed[:, :, -1:] + self.eps) * self.scale | |
dim_t = torch.arange( | |
self.num_feats, dtype=torch.float32, device=mask.device) | |
dim_t = self.temperature**(2 * (dim_t // 2) / self.num_feats) | |
pos_x = x_embed[:, :, :, None] / dim_t | |
pos_y = y_embed[:, :, :, None] / dim_t | |
# use `view` instead of `flatten` for dynamically exporting to ONNX | |
B, H, W = mask.size() | |
pos_x = torch.stack( | |
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), | |
dim=4).view(B, H, W, -1) | |
pos_y = torch.stack( | |
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), | |
dim=4).view(B, H, W, -1) | |
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) | |
return pos | |
def __repr__(self) -> str: | |
"""str: a string that describes the module""" | |
repr_str = self.__class__.__name__ | |
repr_str += f'(num_feats={self.num_feats}, ' | |
repr_str += f'temperature={self.temperature}, ' | |
repr_str += f'normalize={self.normalize}, ' | |
repr_str += f'scale={self.scale}, ' | |
repr_str += f'eps={self.eps})' | |
return repr_str | |
class LearnedPositionalEncoding(BaseModule): | |
"""Position embedding with learnable embedding weights. | |
Args: | |
num_feats (int): The feature dimension for each position | |
along x-axis or y-axis. The final returned dimension for | |
each position is 2 times of this value. | |
row_num_embed (int, optional): The dictionary size of row embeddings. | |
Defaults to 50. | |
col_num_embed (int, optional): The dictionary size of col embeddings. | |
Defaults to 50. | |
init_cfg (dict or list[dict], optional): Initialization config dict. | |
""" | |
def __init__( | |
self, | |
num_feats: int, | |
row_num_embed: int = 50, | |
col_num_embed: int = 50, | |
init_cfg: MultiConfig = dict(type='Uniform', layer='Embedding') | |
) -> None: | |
super().__init__(init_cfg=init_cfg) | |
self.row_embed = nn.Embedding(row_num_embed, num_feats) | |
self.col_embed = nn.Embedding(col_num_embed, num_feats) | |
self.num_feats = num_feats | |
self.row_num_embed = row_num_embed | |
self.col_num_embed = col_num_embed | |
def forward(self, mask: Tensor) -> Tensor: | |
"""Forward function for `LearnedPositionalEncoding`. | |
Args: | |
mask (Tensor): ByteTensor mask. Non-zero values representing | |
ignored positions, while zero values means valid positions | |
for this image. Shape [bs, h, w]. | |
Returns: | |
pos (Tensor): Returned position embedding with shape | |
[bs, num_feats*2, h, w]. | |
""" | |
h, w = mask.shape[-2:] | |
x = torch.arange(w, device=mask.device) | |
y = torch.arange(h, device=mask.device) | |
x_embed = self.col_embed(x) | |
y_embed = self.row_embed(y) | |
pos = torch.cat( | |
(x_embed.unsqueeze(0).repeat(h, 1, 1), y_embed.unsqueeze(1).repeat( | |
1, w, 1)), | |
dim=-1).permute(2, 0, | |
1).unsqueeze(0).repeat(mask.shape[0], 1, 1, 1) | |
return pos | |
def __repr__(self) -> str: | |
"""str: a string that describes the module""" | |
repr_str = self.__class__.__name__ | |
repr_str += f'(num_feats={self.num_feats}, ' | |
repr_str += f'row_num_embed={self.row_num_embed}, ' | |
repr_str += f'col_num_embed={self.col_num_embed})' | |
return repr_str | |