Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import Conv2d, ConvModule | |
from mmcv.cnn.bricks.transformer import MultiScaleDeformableAttention | |
from mmengine.model import (BaseModule, ModuleList, caffe2_xavier_init, | |
normal_init, xavier_init) | |
from torch import Tensor | |
from mmdet.registry import MODELS | |
from mmdet.utils import ConfigType, OptMultiConfig | |
from ..task_modules.prior_generators import MlvlPointGenerator | |
from .positional_encoding import SinePositionalEncoding | |
from .transformer import Mask2FormerTransformerEncoder | |
class MSDeformAttnPixelDecoder(BaseModule): | |
"""Pixel decoder with multi-scale deformable attention. | |
Args: | |
in_channels (list[int] | tuple[int]): Number of channels in the | |
input feature maps. | |
strides (list[int] | tuple[int]): Output strides of feature from | |
backbone. | |
feat_channels (int): Number of channels for feature. | |
out_channels (int): Number of channels for output. | |
num_outs (int): Number of output scales. | |
norm_cfg (:obj:`ConfigDict` or dict): Config for normalization. | |
Defaults to dict(type='GN', num_groups=32). | |
act_cfg (:obj:`ConfigDict` or dict): Config for activation. | |
Defaults to dict(type='ReLU'). | |
encoder (:obj:`ConfigDict` or dict): Config for transformer | |
encoder. Defaults to None. | |
positional_encoding (:obj:`ConfigDict` or dict): Config for | |
transformer encoder position encoding. Defaults to | |
dict(num_feats=128, normalize=True). | |
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \ | |
dict], optional): Initialization config dict. Defaults to None. | |
""" | |
def __init__(self, | |
in_channels: Union[List[int], | |
Tuple[int]] = [256, 512, 1024, 2048], | |
strides: Union[List[int], Tuple[int]] = [4, 8, 16, 32], | |
feat_channels: int = 256, | |
out_channels: int = 256, | |
num_outs: int = 3, | |
norm_cfg: ConfigType = dict(type='GN', num_groups=32), | |
act_cfg: ConfigType = dict(type='ReLU'), | |
encoder: ConfigType = None, | |
positional_encoding: ConfigType = dict( | |
num_feats=128, normalize=True), | |
init_cfg: OptMultiConfig = None) -> None: | |
super().__init__(init_cfg=init_cfg) | |
self.strides = strides | |
self.num_input_levels = len(in_channels) | |
self.num_encoder_levels = \ | |
encoder.layer_cfg.self_attn_cfg.num_levels | |
assert self.num_encoder_levels >= 1, \ | |
'num_levels in attn_cfgs must be at least one' | |
input_conv_list = [] | |
# from top to down (low to high resolution) | |
for i in range(self.num_input_levels - 1, | |
self.num_input_levels - self.num_encoder_levels - 1, | |
-1): | |
input_conv = ConvModule( | |
in_channels[i], | |
feat_channels, | |
kernel_size=1, | |
norm_cfg=norm_cfg, | |
act_cfg=None, | |
bias=True) | |
input_conv_list.append(input_conv) | |
self.input_convs = ModuleList(input_conv_list) | |
self.encoder = Mask2FormerTransformerEncoder(**encoder) | |
self.postional_encoding = SinePositionalEncoding(**positional_encoding) | |
# high resolution to low resolution | |
self.level_encoding = nn.Embedding(self.num_encoder_levels, | |
feat_channels) | |
# fpn-like structure | |
self.lateral_convs = ModuleList() | |
self.output_convs = ModuleList() | |
self.use_bias = norm_cfg is None | |
# from top to down (low to high resolution) | |
# fpn for the rest features that didn't pass in encoder | |
for i in range(self.num_input_levels - self.num_encoder_levels - 1, -1, | |
-1): | |
lateral_conv = ConvModule( | |
in_channels[i], | |
feat_channels, | |
kernel_size=1, | |
bias=self.use_bias, | |
norm_cfg=norm_cfg, | |
act_cfg=None) | |
output_conv = ConvModule( | |
feat_channels, | |
feat_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=self.use_bias, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg) | |
self.lateral_convs.append(lateral_conv) | |
self.output_convs.append(output_conv) | |
self.mask_feature = Conv2d( | |
feat_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
self.num_outs = num_outs | |
self.point_generator = MlvlPointGenerator(strides) | |
def init_weights(self) -> None: | |
"""Initialize weights.""" | |
for i in range(0, self.num_encoder_levels): | |
xavier_init( | |
self.input_convs[i].conv, | |
gain=1, | |
bias=0, | |
distribution='uniform') | |
for i in range(0, self.num_input_levels - self.num_encoder_levels): | |
caffe2_xavier_init(self.lateral_convs[i].conv, bias=0) | |
caffe2_xavier_init(self.output_convs[i].conv, bias=0) | |
caffe2_xavier_init(self.mask_feature, bias=0) | |
normal_init(self.level_encoding, mean=0, std=1) | |
for p in self.encoder.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_normal_(p) | |
# init_weights defined in MultiScaleDeformableAttention | |
for m in self.encoder.layers.modules(): | |
if isinstance(m, MultiScaleDeformableAttention): | |
m.init_weights() | |
def forward(self, feats: List[Tensor]) -> Tuple[Tensor, Tensor]: | |
""" | |
Args: | |
feats (list[Tensor]): Feature maps of each level. Each has | |
shape of (batch_size, c, h, w). | |
Returns: | |
tuple: A tuple containing the following: | |
- mask_feature (Tensor): shape (batch_size, c, h, w). | |
- multi_scale_features (list[Tensor]): Multi scale \ | |
features, each in shape (batch_size, c, h, w). | |
""" | |
# generate padding mask for each level, for each image | |
batch_size = feats[0].shape[0] | |
encoder_input_list = [] | |
padding_mask_list = [] | |
level_positional_encoding_list = [] | |
spatial_shapes = [] | |
reference_points_list = [] | |
for i in range(self.num_encoder_levels): | |
level_idx = self.num_input_levels - i - 1 | |
feat = feats[level_idx] | |
feat_projected = self.input_convs[i](feat) | |
h, w = feat.shape[-2:] | |
# no padding | |
padding_mask_resized = feat.new_zeros( | |
(batch_size, ) + feat.shape[-2:], dtype=torch.bool) | |
pos_embed = self.postional_encoding(padding_mask_resized) | |
level_embed = self.level_encoding.weight[i] | |
level_pos_embed = level_embed.view(1, -1, 1, 1) + pos_embed | |
# (h_i * w_i, 2) | |
reference_points = self.point_generator.single_level_grid_priors( | |
feat.shape[-2:], level_idx, device=feat.device) | |
# normalize | |
factor = feat.new_tensor([[w, h]]) * self.strides[level_idx] | |
reference_points = reference_points / factor | |
# shape (batch_size, c, h_i, w_i) -> (h_i * w_i, batch_size, c) | |
feat_projected = feat_projected.flatten(2).permute(0, 2, 1) | |
level_pos_embed = level_pos_embed.flatten(2).permute(0, 2, 1) | |
padding_mask_resized = padding_mask_resized.flatten(1) | |
encoder_input_list.append(feat_projected) | |
padding_mask_list.append(padding_mask_resized) | |
level_positional_encoding_list.append(level_pos_embed) | |
spatial_shapes.append(feat.shape[-2:]) | |
reference_points_list.append(reference_points) | |
# shape (batch_size, total_num_queries), | |
# total_num_queries=sum([., h_i * w_i,.]) | |
padding_masks = torch.cat(padding_mask_list, dim=1) | |
# shape (total_num_queries, batch_size, c) | |
encoder_inputs = torch.cat(encoder_input_list, dim=1) | |
level_positional_encodings = torch.cat( | |
level_positional_encoding_list, dim=1) | |
device = encoder_inputs.device | |
# shape (num_encoder_levels, 2), from low | |
# resolution to high resolution | |
spatial_shapes = torch.as_tensor( | |
spatial_shapes, dtype=torch.long, device=device) | |
# shape (0, h_0*w_0, h_0*w_0+h_1*w_1, ...) | |
level_start_index = torch.cat((spatial_shapes.new_zeros( | |
(1, )), spatial_shapes.prod(1).cumsum(0)[:-1])) | |
reference_points = torch.cat(reference_points_list, dim=0) | |
reference_points = reference_points[None, :, None].repeat( | |
batch_size, 1, self.num_encoder_levels, 1) | |
valid_radios = reference_points.new_ones( | |
(batch_size, self.num_encoder_levels, 2)) | |
# shape (num_total_queries, batch_size, c) | |
memory = self.encoder( | |
query=encoder_inputs, | |
query_pos=level_positional_encodings, | |
key_padding_mask=padding_masks, | |
spatial_shapes=spatial_shapes, | |
reference_points=reference_points, | |
level_start_index=level_start_index, | |
valid_ratios=valid_radios) | |
# (batch_size, c, num_total_queries) | |
memory = memory.permute(0, 2, 1) | |
# from low resolution to high resolution | |
num_queries_per_level = [e[0] * e[1] for e in spatial_shapes] | |
outs = torch.split(memory, num_queries_per_level, dim=-1) | |
outs = [ | |
x.reshape(batch_size, -1, spatial_shapes[i][0], | |
spatial_shapes[i][1]) for i, x in enumerate(outs) | |
] | |
for i in range(self.num_input_levels - self.num_encoder_levels - 1, -1, | |
-1): | |
x = feats[i] | |
cur_feat = self.lateral_convs[i](x) | |
y = cur_feat + F.interpolate( | |
outs[-1], | |
size=cur_feat.shape[-2:], | |
mode='bilinear', | |
align_corners=False) | |
y = self.output_convs[i](y) | |
outs.append(y) | |
multi_scale_features = outs[:self.num_outs] | |
mask_feature = self.mask_feature(outs[-1]) | |
return mask_feature, multi_scale_features | |