Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
def mask_matrix_nms(masks, | |
labels, | |
scores, | |
filter_thr=-1, | |
nms_pre=-1, | |
max_num=-1, | |
kernel='gaussian', | |
sigma=2.0, | |
mask_area=None): | |
"""Matrix NMS for multi-class masks. | |
Args: | |
masks (Tensor): Has shape (num_instances, h, w) | |
labels (Tensor): Labels of corresponding masks, | |
has shape (num_instances,). | |
scores (Tensor): Mask scores of corresponding masks, | |
has shape (num_instances). | |
filter_thr (float): Score threshold to filter the masks | |
after matrix nms. Default: -1, which means do not | |
use filter_thr. | |
nms_pre (int): The max number of instances to do the matrix nms. | |
Default: -1, which means do not use nms_pre. | |
max_num (int, optional): If there are more than max_num masks after | |
matrix, only top max_num will be kept. Default: -1, which means | |
do not use max_num. | |
kernel (str): 'linear' or 'gaussian'. | |
sigma (float): std in gaussian method. | |
mask_area (Tensor): The sum of seg_masks. | |
Returns: | |
tuple(Tensor): Processed mask results. | |
- scores (Tensor): Updated scores, has shape (n,). | |
- labels (Tensor): Remained labels, has shape (n,). | |
- masks (Tensor): Remained masks, has shape (n, w, h). | |
- keep_inds (Tensor): The indices number of | |
the remaining mask in the input mask, has shape (n,). | |
""" | |
assert len(labels) == len(masks) == len(scores) | |
if len(labels) == 0: | |
return scores.new_zeros(0), labels.new_zeros(0), masks.new_zeros( | |
0, *masks.shape[-2:]), labels.new_zeros(0) | |
if mask_area is None: | |
mask_area = masks.sum((1, 2)).float() | |
else: | |
assert len(masks) == len(mask_area) | |
# sort and keep top nms_pre | |
scores, sort_inds = torch.sort(scores, descending=True) | |
keep_inds = sort_inds | |
if nms_pre > 0 and len(sort_inds) > nms_pre: | |
sort_inds = sort_inds[:nms_pre] | |
keep_inds = keep_inds[:nms_pre] | |
scores = scores[:nms_pre] | |
masks = masks[sort_inds] | |
mask_area = mask_area[sort_inds] | |
labels = labels[sort_inds] | |
num_masks = len(labels) | |
flatten_masks = masks.reshape(num_masks, -1).float() | |
# inter. | |
inter_matrix = torch.mm(flatten_masks, flatten_masks.transpose(1, 0)) | |
expanded_mask_area = mask_area.expand(num_masks, num_masks) | |
# Upper triangle iou matrix. | |
iou_matrix = (inter_matrix / | |
(expanded_mask_area + expanded_mask_area.transpose(1, 0) - | |
inter_matrix)).triu(diagonal=1) | |
# label_specific matrix. | |
expanded_labels = labels.expand(num_masks, num_masks) | |
# Upper triangle label matrix. | |
label_matrix = (expanded_labels == expanded_labels.transpose( | |
1, 0)).triu(diagonal=1) | |
# IoU compensation | |
compensate_iou, _ = (iou_matrix * label_matrix).max(0) | |
compensate_iou = compensate_iou.expand(num_masks, | |
num_masks).transpose(1, 0) | |
# IoU decay | |
decay_iou = iou_matrix * label_matrix | |
# Calculate the decay_coefficient | |
if kernel == 'gaussian': | |
decay_matrix = torch.exp(-1 * sigma * (decay_iou**2)) | |
compensate_matrix = torch.exp(-1 * sigma * (compensate_iou**2)) | |
decay_coefficient, _ = (decay_matrix / compensate_matrix).min(0) | |
elif kernel == 'linear': | |
decay_matrix = (1 - decay_iou) / (1 - compensate_iou) | |
decay_coefficient, _ = decay_matrix.min(0) | |
else: | |
raise NotImplementedError( | |
f'{kernel} kernel is not supported in matrix nms!') | |
# update the score. | |
scores = scores * decay_coefficient | |
if filter_thr > 0: | |
keep = scores >= filter_thr | |
keep_inds = keep_inds[keep] | |
if not keep.any(): | |
return scores.new_zeros(0), labels.new_zeros(0), masks.new_zeros( | |
0, *masks.shape[-2:]), labels.new_zeros(0) | |
masks = masks[keep] | |
scores = scores[keep] | |
labels = labels[keep] | |
# sort and keep top max_num | |
scores, sort_inds = torch.sort(scores, descending=True) | |
keep_inds = keep_inds[sort_inds] | |
if max_num > 0 and len(sort_inds) > max_num: | |
sort_inds = sort_inds[:max_num] | |
keep_inds = keep_inds[:max_num] | |
scores = scores[:max_num] | |
masks = masks[sort_inds] | |
labels = labels[sort_inds] | |
return scores, labels, masks, keep_inds | |