Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import copy | |
from typing import List, Optional, Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import ConvModule | |
from mmcv.ops import batched_nms | |
from mmengine.config import ConfigDict | |
from mmengine.structures import InstanceData | |
from torch import Tensor | |
from mmdet.registry import MODELS | |
from mmdet.structures.bbox import (cat_boxes, empty_box_as, get_box_tensor, | |
get_box_wh, scale_boxes) | |
from mmdet.utils import InstanceList, MultiConfig, OptInstanceList | |
from .anchor_head import AnchorHead | |
class RPNHead(AnchorHead): | |
"""Implementation of RPN head. | |
Args: | |
in_channels (int): Number of channels in the input feature map. | |
num_classes (int): Number of categories excluding the background | |
category. Defaults to 1. | |
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or \ | |
list[dict]): Initialization config dict. | |
num_convs (int): Number of convolution layers in the head. | |
Defaults to 1. | |
""" # noqa: W605 | |
def __init__(self, | |
in_channels: int, | |
num_classes: int = 1, | |
init_cfg: MultiConfig = dict( | |
type='Normal', layer='Conv2d', std=0.01), | |
num_convs: int = 1, | |
**kwargs) -> None: | |
self.num_convs = num_convs | |
assert num_classes == 1 | |
super().__init__( | |
num_classes=num_classes, | |
in_channels=in_channels, | |
init_cfg=init_cfg, | |
**kwargs) | |
def _init_layers(self) -> None: | |
"""Initialize layers of the head.""" | |
if self.num_convs > 1: | |
rpn_convs = [] | |
for i in range(self.num_convs): | |
if i == 0: | |
in_channels = self.in_channels | |
else: | |
in_channels = self.feat_channels | |
# use ``inplace=False`` to avoid error: one of the variables | |
# needed for gradient computation has been modified by an | |
# inplace operation. | |
rpn_convs.append( | |
ConvModule( | |
in_channels, | |
self.feat_channels, | |
3, | |
padding=1, | |
inplace=False)) | |
self.rpn_conv = nn.Sequential(*rpn_convs) | |
else: | |
self.rpn_conv = nn.Conv2d( | |
self.in_channels, self.feat_channels, 3, padding=1) | |
self.rpn_cls = nn.Conv2d(self.feat_channels, | |
self.num_base_priors * self.cls_out_channels, | |
1) | |
reg_dim = self.bbox_coder.encode_size | |
self.rpn_reg = nn.Conv2d(self.feat_channels, | |
self.num_base_priors * reg_dim, 1) | |
def forward_single(self, x: Tensor) -> Tuple[Tensor, Tensor]: | |
"""Forward feature of a single scale level. | |
Args: | |
x (Tensor): Features of a single scale level. | |
Returns: | |
tuple: | |
cls_score (Tensor): Cls scores for a single scale level \ | |
the channels number is num_base_priors * num_classes. | |
bbox_pred (Tensor): Box energies / deltas for a single scale \ | |
level, the channels number is num_base_priors * 4. | |
""" | |
x = self.rpn_conv(x) | |
x = F.relu(x) | |
rpn_cls_score = self.rpn_cls(x) | |
rpn_bbox_pred = self.rpn_reg(x) | |
return rpn_cls_score, rpn_bbox_pred | |
def loss_by_feat(self, | |
cls_scores: List[Tensor], | |
bbox_preds: List[Tensor], | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None) \ | |
-> dict: | |
"""Calculate the loss based on the features extracted by the detection | |
head. | |
Args: | |
cls_scores (list[Tensor]): Box scores for each scale level, | |
has shape (N, num_anchors * num_classes, H, W). | |
bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
level with shape (N, num_anchors * 4, H, W). | |
batch_gt_instances (list[obj:InstanceData]): Batch of gt_instance. | |
It usually includes ``bboxes`` and ``labels`` attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[obj:InstanceData], Optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
losses = super().loss_by_feat( | |
cls_scores, | |
bbox_preds, | |
batch_gt_instances, | |
batch_img_metas, | |
batch_gt_instances_ignore=batch_gt_instances_ignore) | |
return dict( | |
loss_rpn_cls=losses['loss_cls'], loss_rpn_bbox=losses['loss_bbox']) | |
def _predict_by_feat_single(self, | |
cls_score_list: List[Tensor], | |
bbox_pred_list: List[Tensor], | |
score_factor_list: List[Tensor], | |
mlvl_priors: List[Tensor], | |
img_meta: dict, | |
cfg: ConfigDict, | |
rescale: bool = False, | |
with_nms: bool = True) -> InstanceData: | |
"""Transform a single image's features extracted from the head into | |
bbox results. | |
Args: | |
cls_score_list (list[Tensor]): Box scores from all scale | |
levels of a single image, each item has shape | |
(num_priors * num_classes, H, W). | |
bbox_pred_list (list[Tensor]): Box energies / deltas from | |
all scale levels of a single image, each item has shape | |
(num_priors * 4, H, W). | |
score_factor_list (list[Tensor]): Be compatible with | |
BaseDenseHead. Not used in RPNHead. | |
mlvl_priors (list[Tensor]): Each element in the list is | |
the priors of a single level in feature pyramid. In all | |
anchor-based methods, it has shape (num_priors, 4). In | |
all anchor-free methods, it has shape (num_priors, 2) | |
when `with_stride=True`, otherwise it still has shape | |
(num_priors, 4). | |
img_meta (dict): Image meta info. | |
cfg (ConfigDict, optional): Test / postprocessing configuration, | |
if None, test_cfg would be used. | |
rescale (bool): If True, return boxes in original image space. | |
Defaults to False. | |
Returns: | |
:obj:`InstanceData`: Detection results of each image | |
after the post process. | |
Each item usually contains following keys. | |
- scores (Tensor): Classification scores, has a shape | |
(num_instance, ) | |
- labels (Tensor): Labels of bboxes, has a shape | |
(num_instances, ). | |
- bboxes (Tensor): Has a shape (num_instances, 4), | |
the last dimension 4 arrange as (x1, y1, x2, y2). | |
""" | |
cfg = self.test_cfg if cfg is None else cfg | |
cfg = copy.deepcopy(cfg) | |
img_shape = img_meta['img_shape'] | |
nms_pre = cfg.get('nms_pre', -1) | |
mlvl_bbox_preds = [] | |
mlvl_valid_priors = [] | |
mlvl_scores = [] | |
level_ids = [] | |
for level_idx, (cls_score, bbox_pred, priors) in \ | |
enumerate(zip(cls_score_list, bbox_pred_list, | |
mlvl_priors)): | |
assert cls_score.size()[-2:] == bbox_pred.size()[-2:] | |
reg_dim = self.bbox_coder.encode_size | |
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, reg_dim) | |
cls_score = cls_score.permute(1, 2, | |
0).reshape(-1, self.cls_out_channels) | |
if self.use_sigmoid_cls: | |
scores = cls_score.sigmoid() | |
else: | |
# remind that we set FG labels to [0] since mmdet v2.0 | |
# BG cat_id: 1 | |
scores = cls_score.softmax(-1)[:, :-1] | |
scores = torch.squeeze(scores) | |
if 0 < nms_pre < scores.shape[0]: | |
# sort is faster than topk | |
# _, topk_inds = scores.topk(cfg.nms_pre) | |
ranked_scores, rank_inds = scores.sort(descending=True) | |
topk_inds = rank_inds[:nms_pre] | |
scores = ranked_scores[:nms_pre] | |
bbox_pred = bbox_pred[topk_inds, :] | |
priors = priors[topk_inds] | |
mlvl_bbox_preds.append(bbox_pred) | |
mlvl_valid_priors.append(priors) | |
mlvl_scores.append(scores) | |
# use level id to implement the separate level nms | |
level_ids.append( | |
scores.new_full((scores.size(0), ), | |
level_idx, | |
dtype=torch.long)) | |
bbox_pred = torch.cat(mlvl_bbox_preds) | |
priors = cat_boxes(mlvl_valid_priors) | |
bboxes = self.bbox_coder.decode(priors, bbox_pred, max_shape=img_shape) | |
results = InstanceData() | |
results.bboxes = bboxes | |
results.scores = torch.cat(mlvl_scores) | |
results.level_ids = torch.cat(level_ids) | |
return self._bbox_post_process( | |
results=results, cfg=cfg, rescale=rescale, img_meta=img_meta) | |
def _bbox_post_process(self, | |
results: InstanceData, | |
cfg: ConfigDict, | |
rescale: bool = False, | |
with_nms: bool = True, | |
img_meta: Optional[dict] = None) -> InstanceData: | |
"""bbox post-processing method. | |
The boxes would be rescaled to the original image scale and do | |
the nms operation. | |
Args: | |
results (:obj:`InstaceData`): Detection instance results, | |
each item has shape (num_bboxes, ). | |
cfg (ConfigDict): Test / postprocessing configuration. | |
rescale (bool): If True, return boxes in original image space. | |
Defaults to False. | |
with_nms (bool): If True, do nms before return boxes. | |
Default to True. | |
img_meta (dict, optional): Image meta info. Defaults to None. | |
Returns: | |
:obj:`InstanceData`: Detection results of each image | |
after the post process. | |
Each item usually contains following keys. | |
- scores (Tensor): Classification scores, has a shape | |
(num_instance, ) | |
- labels (Tensor): Labels of bboxes, has a shape | |
(num_instances, ). | |
- bboxes (Tensor): Has a shape (num_instances, 4), | |
the last dimension 4 arrange as (x1, y1, x2, y2). | |
""" | |
assert with_nms, '`with_nms` must be True in RPNHead' | |
if rescale: | |
assert img_meta.get('scale_factor') is not None | |
scale_factor = [1 / s for s in img_meta['scale_factor']] | |
results.bboxes = scale_boxes(results.bboxes, scale_factor) | |
# filter small size bboxes | |
if cfg.get('min_bbox_size', -1) >= 0: | |
w, h = get_box_wh(results.bboxes) | |
valid_mask = (w > cfg.min_bbox_size) & (h > cfg.min_bbox_size) | |
if not valid_mask.all(): | |
results = results[valid_mask] | |
if results.bboxes.numel() > 0: | |
bboxes = get_box_tensor(results.bboxes) | |
det_bboxes, keep_idxs = batched_nms(bboxes, results.scores, | |
results.level_ids, cfg.nms) | |
results = results[keep_idxs] | |
# some nms would reweight the score, such as softnms | |
results.scores = det_bboxes[:, -1] | |
results = results[:cfg.max_per_img] | |
# TODO: This would unreasonably show the 0th class label | |
# in visualization | |
results.labels = results.scores.new_zeros( | |
len(results), dtype=torch.long) | |
del results.level_ids | |
else: | |
# To avoid some potential error | |
results_ = InstanceData() | |
results_.bboxes = empty_box_as(results.bboxes) | |
results_.scores = results.scores.new_zeros(0) | |
results_.labels = results.scores.new_zeros(0) | |
results = results_ | |
return results | |