Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Tuple | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule | |
from mmengine.model import bias_init_with_prob, normal_init | |
from torch import Tensor | |
from mmdet.registry import MODELS | |
from mmdet.utils import OptConfigType, OptMultiConfig | |
from .anchor_head import AnchorHead | |
class RetinaSepBNHead(AnchorHead): | |
""""RetinaHead with separate BN. | |
In RetinaHead, conv/norm layers are shared across different FPN levels, | |
while in RetinaSepBNHead, conv layers are shared across different FPN | |
levels, but BN layers are separated. | |
""" | |
def __init__(self, | |
num_classes: int, | |
num_ins: int, | |
in_channels: int, | |
stacked_convs: int = 4, | |
conv_cfg: OptConfigType = None, | |
norm_cfg: OptConfigType = None, | |
init_cfg: OptMultiConfig = None, | |
**kwargs) -> None: | |
assert init_cfg is None, 'To prevent abnormal initialization ' \ | |
'behavior, init_cfg is not allowed to be set' | |
self.stacked_convs = stacked_convs | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.num_ins = num_ins | |
super().__init__( | |
num_classes=num_classes, | |
in_channels=in_channels, | |
init_cfg=init_cfg, | |
**kwargs) | |
def _init_layers(self) -> None: | |
"""Initialize layers of the head.""" | |
self.relu = nn.ReLU(inplace=True) | |
self.cls_convs = nn.ModuleList() | |
self.reg_convs = nn.ModuleList() | |
for i in range(self.num_ins): | |
cls_convs = nn.ModuleList() | |
reg_convs = nn.ModuleList() | |
for j in range(self.stacked_convs): | |
chn = self.in_channels if j == 0 else self.feat_channels | |
cls_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg)) | |
reg_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg)) | |
self.cls_convs.append(cls_convs) | |
self.reg_convs.append(reg_convs) | |
for i in range(self.stacked_convs): | |
for j in range(1, self.num_ins): | |
self.cls_convs[j][i].conv = self.cls_convs[0][i].conv | |
self.reg_convs[j][i].conv = self.reg_convs[0][i].conv | |
self.retina_cls = nn.Conv2d( | |
self.feat_channels, | |
self.num_base_priors * self.cls_out_channels, | |
3, | |
padding=1) | |
self.retina_reg = nn.Conv2d( | |
self.feat_channels, self.num_base_priors * 4, 3, padding=1) | |
def init_weights(self) -> None: | |
"""Initialize weights of the head.""" | |
super().init_weights() | |
for m in self.cls_convs[0]: | |
normal_init(m.conv, std=0.01) | |
for m in self.reg_convs[0]: | |
normal_init(m.conv, std=0.01) | |
bias_cls = bias_init_with_prob(0.01) | |
normal_init(self.retina_cls, std=0.01, bias=bias_cls) | |
normal_init(self.retina_reg, std=0.01) | |
def forward(self, feats: Tuple[Tensor]) -> tuple: | |
"""Forward features from the upstream network. | |
Args: | |
feats (tuple[Tensor]): Features from the upstream network, each is | |
a 4D-tensor. | |
Returns: | |
tuple: Usually a tuple of classification scores and bbox prediction | |
- cls_scores (list[Tensor]): Classification scores for all | |
scale levels, each is a 4D-tensor, the channels number is | |
num_anchors * num_classes. | |
- bbox_preds (list[Tensor]): Box energies / deltas for all | |
scale levels, each is a 4D-tensor, the channels number is | |
num_anchors * 4. | |
""" | |
cls_scores = [] | |
bbox_preds = [] | |
for i, x in enumerate(feats): | |
cls_feat = feats[i] | |
reg_feat = feats[i] | |
for cls_conv in self.cls_convs[i]: | |
cls_feat = cls_conv(cls_feat) | |
for reg_conv in self.reg_convs[i]: | |
reg_feat = reg_conv(reg_feat) | |
cls_score = self.retina_cls(cls_feat) | |
bbox_pred = self.retina_reg(reg_feat) | |
cls_scores.append(cls_score) | |
bbox_preds.append(bbox_pred) | |
return cls_scores, bbox_preds | |