Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Optional, Tuple | |
import numpy as np | |
import torch | |
from mmengine.structures import InstanceData | |
from torch import Tensor | |
from mmdet.registry import MODELS | |
from mmdet.structures.bbox import bbox_overlaps | |
from mmdet.utils import (ConfigType, InstanceList, OptConfigType, | |
OptInstanceList) | |
from ..layers import multiclass_nms | |
from ..utils import levels_to_images, multi_apply | |
from . import ATSSHead | |
EPS = 1e-12 | |
try: | |
import sklearn.mixture as skm | |
except ImportError: | |
skm = None | |
class PAAHead(ATSSHead): | |
"""Head of PAAAssignment: Probabilistic Anchor Assignment with IoU | |
Prediction for Object Detection. | |
Code is modified from the `official github repo | |
<https://github.com/kkhoot/PAA/blob/master/paa_core | |
/modeling/rpn/paa/loss.py>`_. | |
More details can be found in the `paper | |
<https://arxiv.org/abs/2007.08103>`_ . | |
Args: | |
topk (int): Select topk samples with smallest loss in | |
each level. | |
score_voting (bool): Whether to use score voting in post-process. | |
covariance_type : String describing the type of covariance parameters | |
to be used in :class:`sklearn.mixture.GaussianMixture`. | |
It must be one of: | |
- 'full': each component has its own general covariance matrix | |
- 'tied': all components share the same general covariance matrix | |
- 'diag': each component has its own diagonal covariance matrix | |
- 'spherical': each component has its own single variance | |
Default: 'diag'. From 'full' to 'spherical', the gmm fitting | |
process is faster yet the performance could be influenced. For most | |
cases, 'diag' should be a good choice. | |
""" | |
def __init__(self, | |
*args, | |
topk: int = 9, | |
score_voting: bool = True, | |
covariance_type: str = 'diag', | |
**kwargs): | |
# topk used in paa reassign process | |
self.topk = topk | |
self.with_score_voting = score_voting | |
self.covariance_type = covariance_type | |
super().__init__(*args, **kwargs) | |
def loss_by_feat( | |
self, | |
cls_scores: List[Tensor], | |
bbox_preds: List[Tensor], | |
iou_preds: List[Tensor], | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None) -> dict: | |
"""Calculate the loss based on the features extracted by the detection | |
head. | |
Args: | |
cls_scores (list[Tensor]): Box scores for each scale level | |
Has shape (N, num_anchors * num_classes, H, W) | |
bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
level with shape (N, num_anchors * 4, H, W) | |
iou_preds (list[Tensor]): iou_preds for each scale | |
level with shape (N, num_anchors * 1, H, W) | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss gmm_assignment. | |
""" | |
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
assert len(featmap_sizes) == self.prior_generator.num_levels | |
device = cls_scores[0].device | |
anchor_list, valid_flag_list = self.get_anchors( | |
featmap_sizes, batch_img_metas, device=device) | |
cls_reg_targets = self.get_targets( | |
anchor_list, | |
valid_flag_list, | |
batch_gt_instances, | |
batch_img_metas, | |
batch_gt_instances_ignore=batch_gt_instances_ignore, | |
) | |
(labels, labels_weight, bboxes_target, bboxes_weight, pos_inds, | |
pos_gt_index) = cls_reg_targets | |
cls_scores = levels_to_images(cls_scores) | |
cls_scores = [ | |
item.reshape(-1, self.cls_out_channels) for item in cls_scores | |
] | |
bbox_preds = levels_to_images(bbox_preds) | |
bbox_preds = [item.reshape(-1, 4) for item in bbox_preds] | |
iou_preds = levels_to_images(iou_preds) | |
iou_preds = [item.reshape(-1, 1) for item in iou_preds] | |
pos_losses_list, = multi_apply(self.get_pos_loss, anchor_list, | |
cls_scores, bbox_preds, labels, | |
labels_weight, bboxes_target, | |
bboxes_weight, pos_inds) | |
with torch.no_grad(): | |
reassign_labels, reassign_label_weight, \ | |
reassign_bbox_weights, num_pos = multi_apply( | |
self.paa_reassign, | |
pos_losses_list, | |
labels, | |
labels_weight, | |
bboxes_weight, | |
pos_inds, | |
pos_gt_index, | |
anchor_list) | |
num_pos = sum(num_pos) | |
# convert all tensor list to a flatten tensor | |
cls_scores = torch.cat(cls_scores, 0).view(-1, cls_scores[0].size(-1)) | |
bbox_preds = torch.cat(bbox_preds, 0).view(-1, bbox_preds[0].size(-1)) | |
iou_preds = torch.cat(iou_preds, 0).view(-1, iou_preds[0].size(-1)) | |
labels = torch.cat(reassign_labels, 0).view(-1) | |
flatten_anchors = torch.cat( | |
[torch.cat(item, 0) for item in anchor_list]) | |
labels_weight = torch.cat(reassign_label_weight, 0).view(-1) | |
bboxes_target = torch.cat(bboxes_target, | |
0).view(-1, bboxes_target[0].size(-1)) | |
pos_inds_flatten = ((labels >= 0) | |
& | |
(labels < self.num_classes)).nonzero().reshape(-1) | |
losses_cls = self.loss_cls( | |
cls_scores, | |
labels, | |
labels_weight, | |
avg_factor=max(num_pos, len(batch_img_metas))) # avoid num_pos=0 | |
if num_pos: | |
pos_bbox_pred = self.bbox_coder.decode( | |
flatten_anchors[pos_inds_flatten], | |
bbox_preds[pos_inds_flatten]) | |
pos_bbox_target = bboxes_target[pos_inds_flatten] | |
iou_target = bbox_overlaps( | |
pos_bbox_pred.detach(), pos_bbox_target, is_aligned=True) | |
losses_iou = self.loss_centerness( | |
iou_preds[pos_inds_flatten], | |
iou_target.unsqueeze(-1), | |
avg_factor=num_pos) | |
losses_bbox = self.loss_bbox( | |
pos_bbox_pred, | |
pos_bbox_target, | |
iou_target.clamp(min=EPS), | |
avg_factor=iou_target.sum()) | |
else: | |
losses_iou = iou_preds.sum() * 0 | |
losses_bbox = bbox_preds.sum() * 0 | |
return dict( | |
loss_cls=losses_cls, loss_bbox=losses_bbox, loss_iou=losses_iou) | |
def get_pos_loss(self, anchors: List[Tensor], cls_score: Tensor, | |
bbox_pred: Tensor, label: Tensor, label_weight: Tensor, | |
bbox_target: dict, bbox_weight: Tensor, | |
pos_inds: Tensor) -> Tensor: | |
"""Calculate loss of all potential positive samples obtained from first | |
match process. | |
Args: | |
anchors (list[Tensor]): Anchors of each scale. | |
cls_score (Tensor): Box scores of single image with shape | |
(num_anchors, num_classes) | |
bbox_pred (Tensor): Box energies / deltas of single image | |
with shape (num_anchors, 4) | |
label (Tensor): classification target of each anchor with | |
shape (num_anchors,) | |
label_weight (Tensor): Classification loss weight of each | |
anchor with shape (num_anchors). | |
bbox_target (dict): Regression target of each anchor with | |
shape (num_anchors, 4). | |
bbox_weight (Tensor): Bbox weight of each anchor with shape | |
(num_anchors, 4). | |
pos_inds (Tensor): Index of all positive samples got from | |
first assign process. | |
Returns: | |
Tensor: Losses of all positive samples in single image. | |
""" | |
if not len(pos_inds): | |
return cls_score.new([]), | |
anchors_all_level = torch.cat(anchors, 0) | |
pos_scores = cls_score[pos_inds] | |
pos_bbox_pred = bbox_pred[pos_inds] | |
pos_label = label[pos_inds] | |
pos_label_weight = label_weight[pos_inds] | |
pos_bbox_target = bbox_target[pos_inds] | |
pos_bbox_weight = bbox_weight[pos_inds] | |
pos_anchors = anchors_all_level[pos_inds] | |
pos_bbox_pred = self.bbox_coder.decode(pos_anchors, pos_bbox_pred) | |
# to keep loss dimension | |
loss_cls = self.loss_cls( | |
pos_scores, | |
pos_label, | |
pos_label_weight, | |
avg_factor=1.0, | |
reduction_override='none') | |
loss_bbox = self.loss_bbox( | |
pos_bbox_pred, | |
pos_bbox_target, | |
pos_bbox_weight, | |
avg_factor=1.0, # keep same loss weight before reassign | |
reduction_override='none') | |
loss_cls = loss_cls.sum(-1) | |
pos_loss = loss_bbox + loss_cls | |
return pos_loss, | |
def paa_reassign(self, pos_losses: Tensor, label: Tensor, | |
label_weight: Tensor, bbox_weight: Tensor, | |
pos_inds: Tensor, pos_gt_inds: Tensor, | |
anchors: List[Tensor]) -> tuple: | |
"""Fit loss to GMM distribution and separate positive, ignore, negative | |
samples again with GMM model. | |
Args: | |
pos_losses (Tensor): Losses of all positive samples in | |
single image. | |
label (Tensor): classification target of each anchor with | |
shape (num_anchors,) | |
label_weight (Tensor): Classification loss weight of each | |
anchor with shape (num_anchors). | |
bbox_weight (Tensor): Bbox weight of each anchor with shape | |
(num_anchors, 4). | |
pos_inds (Tensor): Index of all positive samples got from | |
first assign process. | |
pos_gt_inds (Tensor): Gt_index of all positive samples got | |
from first assign process. | |
anchors (list[Tensor]): Anchors of each scale. | |
Returns: | |
tuple: Usually returns a tuple containing learning targets. | |
- label (Tensor): classification target of each anchor after | |
paa assign, with shape (num_anchors,) | |
- label_weight (Tensor): Classification loss weight of each | |
anchor after paa assign, with shape (num_anchors). | |
- bbox_weight (Tensor): Bbox weight of each anchor with shape | |
(num_anchors, 4). | |
- num_pos (int): The number of positive samples after paa | |
assign. | |
""" | |
if not len(pos_inds): | |
return label, label_weight, bbox_weight, 0 | |
label = label.clone() | |
label_weight = label_weight.clone() | |
bbox_weight = bbox_weight.clone() | |
num_gt = pos_gt_inds.max() + 1 | |
num_level = len(anchors) | |
num_anchors_each_level = [item.size(0) for item in anchors] | |
num_anchors_each_level.insert(0, 0) | |
inds_level_interval = np.cumsum(num_anchors_each_level) | |
pos_level_mask = [] | |
for i in range(num_level): | |
mask = (pos_inds >= inds_level_interval[i]) & ( | |
pos_inds < inds_level_interval[i + 1]) | |
pos_level_mask.append(mask) | |
pos_inds_after_paa = [label.new_tensor([])] | |
ignore_inds_after_paa = [label.new_tensor([])] | |
for gt_ind in range(num_gt): | |
pos_inds_gmm = [] | |
pos_loss_gmm = [] | |
gt_mask = pos_gt_inds == gt_ind | |
for level in range(num_level): | |
level_mask = pos_level_mask[level] | |
level_gt_mask = level_mask & gt_mask | |
value, topk_inds = pos_losses[level_gt_mask].topk( | |
min(level_gt_mask.sum(), self.topk), largest=False) | |
pos_inds_gmm.append(pos_inds[level_gt_mask][topk_inds]) | |
pos_loss_gmm.append(value) | |
pos_inds_gmm = torch.cat(pos_inds_gmm) | |
pos_loss_gmm = torch.cat(pos_loss_gmm) | |
# fix gmm need at least two sample | |
if len(pos_inds_gmm) < 2: | |
continue | |
device = pos_inds_gmm.device | |
pos_loss_gmm, sort_inds = pos_loss_gmm.sort() | |
pos_inds_gmm = pos_inds_gmm[sort_inds] | |
pos_loss_gmm = pos_loss_gmm.view(-1, 1).cpu().numpy() | |
min_loss, max_loss = pos_loss_gmm.min(), pos_loss_gmm.max() | |
means_init = np.array([min_loss, max_loss]).reshape(2, 1) | |
weights_init = np.array([0.5, 0.5]) | |
precisions_init = np.array([1.0, 1.0]).reshape(2, 1, 1) # full | |
if self.covariance_type == 'spherical': | |
precisions_init = precisions_init.reshape(2) | |
elif self.covariance_type == 'diag': | |
precisions_init = precisions_init.reshape(2, 1) | |
elif self.covariance_type == 'tied': | |
precisions_init = np.array([[1.0]]) | |
if skm is None: | |
raise ImportError('Please run "pip install sklearn" ' | |
'to install sklearn first.') | |
gmm = skm.GaussianMixture( | |
2, | |
weights_init=weights_init, | |
means_init=means_init, | |
precisions_init=precisions_init, | |
covariance_type=self.covariance_type) | |
gmm.fit(pos_loss_gmm) | |
gmm_assignment = gmm.predict(pos_loss_gmm) | |
scores = gmm.score_samples(pos_loss_gmm) | |
gmm_assignment = torch.from_numpy(gmm_assignment).to(device) | |
scores = torch.from_numpy(scores).to(device) | |
pos_inds_temp, ignore_inds_temp = self.gmm_separation_scheme( | |
gmm_assignment, scores, pos_inds_gmm) | |
pos_inds_after_paa.append(pos_inds_temp) | |
ignore_inds_after_paa.append(ignore_inds_temp) | |
pos_inds_after_paa = torch.cat(pos_inds_after_paa) | |
ignore_inds_after_paa = torch.cat(ignore_inds_after_paa) | |
reassign_mask = (pos_inds.unsqueeze(1) != pos_inds_after_paa).all(1) | |
reassign_ids = pos_inds[reassign_mask] | |
label[reassign_ids] = self.num_classes | |
label_weight[ignore_inds_after_paa] = 0 | |
bbox_weight[reassign_ids] = 0 | |
num_pos = len(pos_inds_after_paa) | |
return label, label_weight, bbox_weight, num_pos | |
def gmm_separation_scheme(self, gmm_assignment: Tensor, scores: Tensor, | |
pos_inds_gmm: Tensor) -> Tuple[Tensor, Tensor]: | |
"""A general separation scheme for gmm model. | |
It separates a GMM distribution of candidate samples into three | |
parts, 0 1 and uncertain areas, and you can implement other | |
separation schemes by rewriting this function. | |
Args: | |
gmm_assignment (Tensor): The prediction of GMM which is of shape | |
(num_samples,). The 0/1 value indicates the distribution | |
that each sample comes from. | |
scores (Tensor): The probability of sample coming from the | |
fit GMM distribution. The tensor is of shape (num_samples,). | |
pos_inds_gmm (Tensor): All the indexes of samples which are used | |
to fit GMM model. The tensor is of shape (num_samples,) | |
Returns: | |
tuple[Tensor, Tensor]: The indices of positive and ignored samples. | |
- pos_inds_temp (Tensor): Indices of positive samples. | |
- ignore_inds_temp (Tensor): Indices of ignore samples. | |
""" | |
# The implementation is (c) in Fig.3 in origin paper instead of (b). | |
# You can refer to issues such as | |
# https://github.com/kkhoot/PAA/issues/8 and | |
# https://github.com/kkhoot/PAA/issues/9. | |
fgs = gmm_assignment == 0 | |
pos_inds_temp = fgs.new_tensor([], dtype=torch.long) | |
ignore_inds_temp = fgs.new_tensor([], dtype=torch.long) | |
if fgs.nonzero().numel(): | |
_, pos_thr_ind = scores[fgs].topk(1) | |
pos_inds_temp = pos_inds_gmm[fgs][:pos_thr_ind + 1] | |
ignore_inds_temp = pos_inds_gmm.new_tensor([]) | |
return pos_inds_temp, ignore_inds_temp | |
def get_targets(self, | |
anchor_list: List[List[Tensor]], | |
valid_flag_list: List[List[Tensor]], | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None, | |
unmap_outputs: bool = True) -> tuple: | |
"""Get targets for PAA head. | |
This method is almost the same as `AnchorHead.get_targets()`. We direct | |
return the results from _get_targets_single instead map it to levels | |
by images_to_levels function. | |
Args: | |
anchor_list (list[list[Tensor]]): Multi level anchors of each | |
image. The outer list indicates images, and the inner list | |
corresponds to feature levels of the image. Each element of | |
the inner list is a tensor of shape (num_anchors, 4). | |
valid_flag_list (list[list[Tensor]]): Multi level valid flags of | |
each image. The outer list indicates images, and the inner list | |
corresponds to feature levels of the image. Each element of | |
the inner list is a tensor of shape (num_anchors, ) | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
unmap_outputs (bool): Whether to map outputs back to the original | |
set of anchors. Defaults to True. | |
Returns: | |
tuple: Usually returns a tuple containing learning targets. | |
- labels (list[Tensor]): Labels of all anchors, each with | |
shape (num_anchors,). | |
- label_weights (list[Tensor]): Label weights of all anchor. | |
each with shape (num_anchors,). | |
- bbox_targets (list[Tensor]): BBox targets of all anchors. | |
each with shape (num_anchors, 4). | |
- bbox_weights (list[Tensor]): BBox weights of all anchors. | |
each with shape (num_anchors, 4). | |
- pos_inds (list[Tensor]): Contains all index of positive | |
sample in all anchor. | |
- gt_inds (list[Tensor]): Contains all gt_index of positive | |
sample in all anchor. | |
""" | |
num_imgs = len(batch_img_metas) | |
assert len(anchor_list) == len(valid_flag_list) == num_imgs | |
concat_anchor_list = [] | |
concat_valid_flag_list = [] | |
for i in range(num_imgs): | |
assert len(anchor_list[i]) == len(valid_flag_list[i]) | |
concat_anchor_list.append(torch.cat(anchor_list[i])) | |
concat_valid_flag_list.append(torch.cat(valid_flag_list[i])) | |
# compute targets for each image | |
if batch_gt_instances_ignore is None: | |
batch_gt_instances_ignore = [None] * num_imgs | |
results = multi_apply( | |
self._get_targets_single, | |
concat_anchor_list, | |
concat_valid_flag_list, | |
batch_gt_instances, | |
batch_img_metas, | |
batch_gt_instances_ignore, | |
unmap_outputs=unmap_outputs) | |
(labels, label_weights, bbox_targets, bbox_weights, valid_pos_inds, | |
valid_neg_inds, sampling_result) = results | |
# Due to valid flag of anchors, we have to calculate the real pos_inds | |
# in origin anchor set. | |
pos_inds = [] | |
for i, single_labels in enumerate(labels): | |
pos_mask = (0 <= single_labels) & ( | |
single_labels < self.num_classes) | |
pos_inds.append(pos_mask.nonzero().view(-1)) | |
gt_inds = [item.pos_assigned_gt_inds for item in sampling_result] | |
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, | |
gt_inds) | |
def _get_targets_single(self, | |
flat_anchors: Tensor, | |
valid_flags: Tensor, | |
gt_instances: InstanceData, | |
img_meta: dict, | |
gt_instances_ignore: Optional[InstanceData] = None, | |
unmap_outputs: bool = True) -> tuple: | |
"""Compute regression and classification targets for anchors in a | |
single image. | |
This method is same as `AnchorHead._get_targets_single()`. | |
""" | |
assert unmap_outputs, 'We must map outputs back to the original' \ | |
'set of anchors in PAAhead' | |
return super(ATSSHead, self)._get_targets_single( | |
flat_anchors, | |
valid_flags, | |
gt_instances, | |
img_meta, | |
gt_instances_ignore, | |
unmap_outputs=True) | |
def predict_by_feat(self, | |
cls_scores: List[Tensor], | |
bbox_preds: List[Tensor], | |
score_factors: Optional[List[Tensor]] = None, | |
batch_img_metas: Optional[List[dict]] = None, | |
cfg: OptConfigType = None, | |
rescale: bool = False, | |
with_nms: bool = True) -> InstanceList: | |
"""Transform a batch of output features extracted from the head into | |
bbox results. | |
This method is same as `BaseDenseHead.get_results()`. | |
""" | |
assert with_nms, 'PAA only supports "with_nms=True" now and it ' \ | |
'means PAAHead does not support ' \ | |
'test-time augmentation' | |
return super().predict_by_feat( | |
cls_scores=cls_scores, | |
bbox_preds=bbox_preds, | |
score_factors=score_factors, | |
batch_img_metas=batch_img_metas, | |
cfg=cfg, | |
rescale=rescale, | |
with_nms=with_nms) | |
def _predict_by_feat_single(self, | |
cls_score_list: List[Tensor], | |
bbox_pred_list: List[Tensor], | |
score_factor_list: List[Tensor], | |
mlvl_priors: List[Tensor], | |
img_meta: dict, | |
cfg: OptConfigType = None, | |
rescale: bool = False, | |
with_nms: bool = True) -> InstanceData: | |
"""Transform a single image's features extracted from the head into | |
bbox results. | |
Args: | |
cls_score_list (list[Tensor]): Box scores from all scale | |
levels of a single image, each item has shape | |
(num_priors * num_classes, H, W). | |
bbox_pred_list (list[Tensor]): Box energies / deltas from | |
all scale levels of a single image, each item has shape | |
(num_priors * 4, H, W). | |
score_factor_list (list[Tensor]): Score factors from all scale | |
levels of a single image, each item has shape | |
(num_priors * 1, H, W). | |
mlvl_priors (list[Tensor]): Each element in the list is | |
the priors of a single level in feature pyramid, has shape | |
(num_priors, 4). | |
img_meta (dict): Image meta info. | |
cfg (:obj:`ConfigDict` or dict, optional): Test / postprocessing | |
configuration, if None, test_cfg would be used. | |
rescale (bool): If True, return boxes in original image space. | |
Default: False. | |
with_nms (bool): If True, do nms before return boxes. | |
Default: True. | |
Returns: | |
:obj:`InstanceData`: Detection results of each image | |
after the post process. | |
Each item usually contains following keys. | |
- scores (Tensor): Classification scores, has a shape | |
(num_instance, ) | |
- labels (Tensor): Labels of bboxes, has a shape | |
(num_instances, ). | |
- bboxes (Tensor): Has a shape (num_instances, 4), | |
the last dimension 4 arrange as (x1, y1, x2, y2). | |
""" | |
cfg = self.test_cfg if cfg is None else cfg | |
img_shape = img_meta['img_shape'] | |
nms_pre = cfg.get('nms_pre', -1) | |
mlvl_bboxes = [] | |
mlvl_scores = [] | |
mlvl_score_factors = [] | |
for level_idx, (cls_score, bbox_pred, score_factor, priors) in \ | |
enumerate(zip(cls_score_list, bbox_pred_list, | |
score_factor_list, mlvl_priors)): | |
assert cls_score.size()[-2:] == bbox_pred.size()[-2:] | |
scores = cls_score.permute(1, 2, 0).reshape( | |
-1, self.cls_out_channels).sigmoid() | |
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) | |
score_factor = score_factor.permute(1, 2, 0).reshape(-1).sigmoid() | |
if 0 < nms_pre < scores.shape[0]: | |
max_scores, _ = (scores * | |
score_factor[:, None]).sqrt().max(dim=1) | |
_, topk_inds = max_scores.topk(nms_pre) | |
priors = priors[topk_inds, :] | |
bbox_pred = bbox_pred[topk_inds, :] | |
scores = scores[topk_inds, :] | |
score_factor = score_factor[topk_inds] | |
bboxes = self.bbox_coder.decode( | |
priors, bbox_pred, max_shape=img_shape) | |
mlvl_bboxes.append(bboxes) | |
mlvl_scores.append(scores) | |
mlvl_score_factors.append(score_factor) | |
results = InstanceData() | |
results.bboxes = torch.cat(mlvl_bboxes) | |
results.scores = torch.cat(mlvl_scores) | |
results.score_factors = torch.cat(mlvl_score_factors) | |
return self._bbox_post_process(results, cfg, rescale, with_nms, | |
img_meta) | |
def _bbox_post_process(self, | |
results: InstanceData, | |
cfg: ConfigType, | |
rescale: bool = False, | |
with_nms: bool = True, | |
img_meta: Optional[dict] = None): | |
"""bbox post-processing method. | |
The boxes would be rescaled to the original image scale and do | |
the nms operation. Usually with_nms is False is used for aug test. | |
Args: | |
results (:obj:`InstaceData`): Detection instance results, | |
each item has shape (num_bboxes, ). | |
cfg (:obj:`ConfigDict` or dict): Test / postprocessing | |
configuration, if None, test_cfg would be used. | |
rescale (bool): If True, return boxes in original image space. | |
Default: False. | |
with_nms (bool): If True, do nms before return boxes. | |
Default: True. | |
img_meta (dict, optional): Image meta info. Defaults to None. | |
Returns: | |
:obj:`InstanceData`: Detection results of each image | |
after the post process. | |
Each item usually contains following keys. | |
- scores (Tensor): Classification scores, has a shape | |
(num_instance, ) | |
- labels (Tensor): Labels of bboxes, has a shape | |
(num_instances, ). | |
- bboxes (Tensor): Has a shape (num_instances, 4), | |
the last dimension 4 arrange as (x1, y1, x2, y2). | |
""" | |
if rescale: | |
results.bboxes /= results.bboxes.new_tensor( | |
img_meta['scale_factor']).repeat((1, 2)) | |
# Add a dummy background class to the backend when using sigmoid | |
# remind that we set FG labels to [0, num_class-1] since mmdet v2.0 | |
# BG cat_id: num_class | |
padding = results.scores.new_zeros(results.scores.shape[0], 1) | |
mlvl_scores = torch.cat([results.scores, padding], dim=1) | |
mlvl_nms_scores = (mlvl_scores * results.score_factors[:, None]).sqrt() | |
det_bboxes, det_labels = multiclass_nms( | |
results.bboxes, | |
mlvl_nms_scores, | |
cfg.score_thr, | |
cfg.nms, | |
cfg.max_per_img, | |
score_factors=None) | |
if self.with_score_voting and len(det_bboxes) > 0: | |
det_bboxes, det_labels = self.score_voting(det_bboxes, det_labels, | |
results.bboxes, | |
mlvl_nms_scores, | |
cfg.score_thr) | |
nms_results = InstanceData() | |
nms_results.bboxes = det_bboxes[:, :-1] | |
nms_results.scores = det_bboxes[:, -1] | |
nms_results.labels = det_labels | |
return nms_results | |
def score_voting(self, det_bboxes: Tensor, det_labels: Tensor, | |
mlvl_bboxes: Tensor, mlvl_nms_scores: Tensor, | |
score_thr: float) -> Tuple[Tensor, Tensor]: | |
"""Implementation of score voting method works on each remaining boxes | |
after NMS procedure. | |
Args: | |
det_bboxes (Tensor): Remaining boxes after NMS procedure, | |
with shape (k, 5), each dimension means | |
(x1, y1, x2, y2, score). | |
det_labels (Tensor): The label of remaining boxes, with shape | |
(k, 1),Labels are 0-based. | |
mlvl_bboxes (Tensor): All boxes before the NMS procedure, | |
with shape (num_anchors,4). | |
mlvl_nms_scores (Tensor): The scores of all boxes which is used | |
in the NMS procedure, with shape (num_anchors, num_class) | |
score_thr (float): The score threshold of bboxes. | |
Returns: | |
tuple: Usually returns a tuple containing voting results. | |
- det_bboxes_voted (Tensor): Remaining boxes after | |
score voting procedure, with shape (k, 5), each | |
dimension means (x1, y1, x2, y2, score). | |
- det_labels_voted (Tensor): Label of remaining bboxes | |
after voting, with shape (num_anchors,). | |
""" | |
candidate_mask = mlvl_nms_scores > score_thr | |
candidate_mask_nonzeros = candidate_mask.nonzero(as_tuple=False) | |
candidate_inds = candidate_mask_nonzeros[:, 0] | |
candidate_labels = candidate_mask_nonzeros[:, 1] | |
candidate_bboxes = mlvl_bboxes[candidate_inds] | |
candidate_scores = mlvl_nms_scores[candidate_mask] | |
det_bboxes_voted = [] | |
det_labels_voted = [] | |
for cls in range(self.cls_out_channels): | |
candidate_cls_mask = candidate_labels == cls | |
if not candidate_cls_mask.any(): | |
continue | |
candidate_cls_scores = candidate_scores[candidate_cls_mask] | |
candidate_cls_bboxes = candidate_bboxes[candidate_cls_mask] | |
det_cls_mask = det_labels == cls | |
det_cls_bboxes = det_bboxes[det_cls_mask].view( | |
-1, det_bboxes.size(-1)) | |
det_candidate_ious = bbox_overlaps(det_cls_bboxes[:, :4], | |
candidate_cls_bboxes) | |
for det_ind in range(len(det_cls_bboxes)): | |
single_det_ious = det_candidate_ious[det_ind] | |
pos_ious_mask = single_det_ious > 0.01 | |
pos_ious = single_det_ious[pos_ious_mask] | |
pos_bboxes = candidate_cls_bboxes[pos_ious_mask] | |
pos_scores = candidate_cls_scores[pos_ious_mask] | |
pis = (torch.exp(-(1 - pos_ious)**2 / 0.025) * | |
pos_scores)[:, None] | |
voted_box = torch.sum( | |
pis * pos_bboxes, dim=0) / torch.sum( | |
pis, dim=0) | |
voted_score = det_cls_bboxes[det_ind][-1:][None, :] | |
det_bboxes_voted.append( | |
torch.cat((voted_box[None, :], voted_score), dim=1)) | |
det_labels_voted.append(cls) | |
det_bboxes_voted = torch.cat(det_bboxes_voted, dim=0) | |
det_labels_voted = det_labels.new_tensor(det_labels_voted) | |
return det_bboxes_voted, det_labels_voted | |