Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Tuple | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule | |
from mmcv.ops import MaskedConv2d | |
from torch import Tensor | |
from mmdet.registry import MODELS | |
from mmdet.utils import OptConfigType, OptMultiConfig | |
from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead | |
class GARetinaHead(GuidedAnchorHead): | |
"""Guided-Anchor-based RetinaNet head.""" | |
def __init__(self, | |
num_classes: int, | |
in_channels: int, | |
stacked_convs: int = 4, | |
conv_cfg: OptConfigType = None, | |
norm_cfg: OptConfigType = None, | |
init_cfg: OptMultiConfig = None, | |
**kwargs) -> None: | |
if init_cfg is None: | |
init_cfg = dict( | |
type='Normal', | |
layer='Conv2d', | |
std=0.01, | |
override=[ | |
dict( | |
type='Normal', | |
name='conv_loc', | |
std=0.01, | |
bias_prob=0.01), | |
dict( | |
type='Normal', | |
name='retina_cls', | |
std=0.01, | |
bias_prob=0.01) | |
]) | |
self.stacked_convs = stacked_convs | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
super().__init__( | |
num_classes=num_classes, | |
in_channels=in_channels, | |
init_cfg=init_cfg, | |
**kwargs) | |
def _init_layers(self) -> None: | |
"""Initialize layers of the head.""" | |
self.relu = nn.ReLU(inplace=True) | |
self.cls_convs = nn.ModuleList() | |
self.reg_convs = nn.ModuleList() | |
for i in range(self.stacked_convs): | |
chn = self.in_channels if i == 0 else self.feat_channels | |
self.cls_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg)) | |
self.reg_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg)) | |
self.conv_loc = nn.Conv2d(self.feat_channels, 1, 1) | |
num_anchors = self.square_anchor_generator.num_base_priors[0] | |
self.conv_shape = nn.Conv2d(self.feat_channels, num_anchors * 2, 1) | |
self.feature_adaption_cls = FeatureAdaption( | |
self.feat_channels, | |
self.feat_channels, | |
kernel_size=3, | |
deform_groups=self.deform_groups) | |
self.feature_adaption_reg = FeatureAdaption( | |
self.feat_channels, | |
self.feat_channels, | |
kernel_size=3, | |
deform_groups=self.deform_groups) | |
self.retina_cls = MaskedConv2d( | |
self.feat_channels, | |
self.num_base_priors * self.cls_out_channels, | |
3, | |
padding=1) | |
self.retina_reg = MaskedConv2d( | |
self.feat_channels, self.num_base_priors * 4, 3, padding=1) | |
def forward_single(self, x: Tensor) -> Tuple[Tensor]: | |
"""Forward feature map of a single scale level.""" | |
cls_feat = x | |
reg_feat = x | |
for cls_conv in self.cls_convs: | |
cls_feat = cls_conv(cls_feat) | |
for reg_conv in self.reg_convs: | |
reg_feat = reg_conv(reg_feat) | |
loc_pred = self.conv_loc(cls_feat) | |
shape_pred = self.conv_shape(reg_feat) | |
cls_feat = self.feature_adaption_cls(cls_feat, shape_pred) | |
reg_feat = self.feature_adaption_reg(reg_feat, shape_pred) | |
if not self.training: | |
mask = loc_pred.sigmoid()[0] >= self.loc_filter_thr | |
else: | |
mask = None | |
cls_score = self.retina_cls(cls_feat, mask) | |
bbox_pred = self.retina_reg(reg_feat, mask) | |
return cls_score, bbox_pred, shape_pred, loc_pred | |