Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Optional, Sequence, Tuple | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule, Scale | |
from mmengine.structures import InstanceData | |
from torch import Tensor | |
from mmdet.registry import MODELS | |
from mmdet.utils import (ConfigType, InstanceList, MultiConfig, OptConfigType, | |
OptInstanceList, reduce_mean) | |
from ..task_modules.prior_generators import anchor_inside_flags | |
from ..utils import images_to_levels, multi_apply, unmap | |
from .anchor_head import AnchorHead | |
class ATSSHead(AnchorHead): | |
"""Detection Head of `ATSS <https://arxiv.org/abs/1912.02424>`_. | |
ATSS head structure is similar with FCOS, however ATSS use anchor boxes | |
and assign label by Adaptive Training Sample Selection instead max-iou. | |
Args: | |
num_classes (int): Number of categories excluding the background | |
category. | |
in_channels (int): Number of channels in the input feature map. | |
pred_kernel_size (int): Kernel size of ``nn.Conv2d`` | |
stacked_convs (int): Number of stacking convs of the head. | |
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for | |
convolution layer. Defaults to None. | |
norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization | |
layer. Defaults to ``dict(type='GN', num_groups=32, | |
requires_grad=True)``. | |
reg_decoded_bbox (bool): If true, the regression loss would be | |
applied directly on decoded bounding boxes, converting both | |
the predicted boxes and regression targets to absolute | |
coordinates format. Defaults to False. It should be `True` when | |
using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head. | |
loss_centerness (:obj:`ConfigDict` or dict): Config of centerness loss. | |
Defaults to ``dict(type='CrossEntropyLoss', use_sigmoid=True, | |
loss_weight=1.0)``. | |
init_cfg (:obj:`ConfigDict` or dict or list[dict] or | |
list[:obj:`ConfigDict`]): Initialization config dict. | |
""" | |
def __init__(self, | |
num_classes: int, | |
in_channels: int, | |
pred_kernel_size: int = 3, | |
stacked_convs: int = 4, | |
conv_cfg: OptConfigType = None, | |
norm_cfg: ConfigType = dict( | |
type='GN', num_groups=32, requires_grad=True), | |
reg_decoded_bbox: bool = True, | |
loss_centerness: ConfigType = dict( | |
type='CrossEntropyLoss', | |
use_sigmoid=True, | |
loss_weight=1.0), | |
init_cfg: MultiConfig = dict( | |
type='Normal', | |
layer='Conv2d', | |
std=0.01, | |
override=dict( | |
type='Normal', | |
name='atss_cls', | |
std=0.01, | |
bias_prob=0.01)), | |
**kwargs) -> None: | |
self.pred_kernel_size = pred_kernel_size | |
self.stacked_convs = stacked_convs | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
super().__init__( | |
num_classes=num_classes, | |
in_channels=in_channels, | |
reg_decoded_bbox=reg_decoded_bbox, | |
init_cfg=init_cfg, | |
**kwargs) | |
self.sampling = False | |
self.loss_centerness = MODELS.build(loss_centerness) | |
def _init_layers(self) -> None: | |
"""Initialize layers of the head.""" | |
self.relu = nn.ReLU(inplace=True) | |
self.cls_convs = nn.ModuleList() | |
self.reg_convs = nn.ModuleList() | |
for i in range(self.stacked_convs): | |
chn = self.in_channels if i == 0 else self.feat_channels | |
self.cls_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg)) | |
self.reg_convs.append( | |
ConvModule( | |
chn, | |
self.feat_channels, | |
3, | |
stride=1, | |
padding=1, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg)) | |
pred_pad_size = self.pred_kernel_size // 2 | |
self.atss_cls = nn.Conv2d( | |
self.feat_channels, | |
self.num_anchors * self.cls_out_channels, | |
self.pred_kernel_size, | |
padding=pred_pad_size) | |
self.atss_reg = nn.Conv2d( | |
self.feat_channels, | |
self.num_base_priors * 4, | |
self.pred_kernel_size, | |
padding=pred_pad_size) | |
self.atss_centerness = nn.Conv2d( | |
self.feat_channels, | |
self.num_base_priors * 1, | |
self.pred_kernel_size, | |
padding=pred_pad_size) | |
self.scales = nn.ModuleList( | |
[Scale(1.0) for _ in self.prior_generator.strides]) | |
def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor]]: | |
"""Forward features from the upstream network. | |
Args: | |
x (tuple[Tensor]): Features from the upstream network, each is | |
a 4D-tensor. | |
Returns: | |
tuple: Usually a tuple of classification scores and bbox prediction | |
cls_scores (list[Tensor]): Classification scores for all scale | |
levels, each is a 4D-tensor, the channels number is | |
num_anchors * num_classes. | |
bbox_preds (list[Tensor]): Box energies / deltas for all scale | |
levels, each is a 4D-tensor, the channels number is | |
num_anchors * 4. | |
""" | |
return multi_apply(self.forward_single, x, self.scales) | |
def forward_single(self, x: Tensor, scale: Scale) -> Sequence[Tensor]: | |
"""Forward feature of a single scale level. | |
Args: | |
x (Tensor): Features of a single scale level. | |
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize | |
the bbox prediction. | |
Returns: | |
tuple: | |
cls_score (Tensor): Cls scores for a single scale level | |
the channels number is num_anchors * num_classes. | |
bbox_pred (Tensor): Box energies / deltas for a single scale | |
level, the channels number is num_anchors * 4. | |
centerness (Tensor): Centerness for a single scale level, the | |
channel number is (N, num_anchors * 1, H, W). | |
""" | |
cls_feat = x | |
reg_feat = x | |
for cls_conv in self.cls_convs: | |
cls_feat = cls_conv(cls_feat) | |
for reg_conv in self.reg_convs: | |
reg_feat = reg_conv(reg_feat) | |
cls_score = self.atss_cls(cls_feat) | |
# we just follow atss, not apply exp in bbox_pred | |
bbox_pred = scale(self.atss_reg(reg_feat)).float() | |
centerness = self.atss_centerness(reg_feat) | |
return cls_score, bbox_pred, centerness | |
def loss_by_feat_single(self, anchors: Tensor, cls_score: Tensor, | |
bbox_pred: Tensor, centerness: Tensor, | |
labels: Tensor, label_weights: Tensor, | |
bbox_targets: Tensor, avg_factor: float) -> dict: | |
"""Calculate the loss of a single scale level based on the features | |
extracted by the detection head. | |
Args: | |
cls_score (Tensor): Box scores for each scale level | |
Has shape (N, num_anchors * num_classes, H, W). | |
bbox_pred (Tensor): Box energies / deltas for each scale | |
level with shape (N, num_anchors * 4, H, W). | |
anchors (Tensor): Box reference for each scale level with shape | |
(N, num_total_anchors, 4). | |
labels (Tensor): Labels of each anchors with shape | |
(N, num_total_anchors). | |
label_weights (Tensor): Label weights of each anchor with shape | |
(N, num_total_anchors) | |
bbox_targets (Tensor): BBox regression targets of each anchor | |
weight shape (N, num_total_anchors, 4). | |
avg_factor (float): Average factor that is used to average | |
the loss. When using sampling method, avg_factor is usually | |
the sum of positive and negative priors. When using | |
`PseudoSampler`, `avg_factor` is usually equal to the number | |
of positive priors. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
anchors = anchors.reshape(-1, 4) | |
cls_score = cls_score.permute(0, 2, 3, 1).reshape( | |
-1, self.cls_out_channels).contiguous() | |
bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) | |
centerness = centerness.permute(0, 2, 3, 1).reshape(-1) | |
bbox_targets = bbox_targets.reshape(-1, 4) | |
labels = labels.reshape(-1) | |
label_weights = label_weights.reshape(-1) | |
# classification loss | |
loss_cls = self.loss_cls( | |
cls_score, labels, label_weights, avg_factor=avg_factor) | |
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes | |
bg_class_ind = self.num_classes | |
pos_inds = ((labels >= 0) | |
& (labels < bg_class_ind)).nonzero().squeeze(1) | |
if len(pos_inds) > 0: | |
pos_bbox_targets = bbox_targets[pos_inds] | |
pos_bbox_pred = bbox_pred[pos_inds] | |
pos_anchors = anchors[pos_inds] | |
pos_centerness = centerness[pos_inds] | |
centerness_targets = self.centerness_target( | |
pos_anchors, pos_bbox_targets) | |
pos_decode_bbox_pred = self.bbox_coder.decode( | |
pos_anchors, pos_bbox_pred) | |
# regression loss | |
loss_bbox = self.loss_bbox( | |
pos_decode_bbox_pred, | |
pos_bbox_targets, | |
weight=centerness_targets, | |
avg_factor=1.0) | |
# centerness loss | |
loss_centerness = self.loss_centerness( | |
pos_centerness, centerness_targets, avg_factor=avg_factor) | |
else: | |
loss_bbox = bbox_pred.sum() * 0 | |
loss_centerness = centerness.sum() * 0 | |
centerness_targets = bbox_targets.new_tensor(0.) | |
return loss_cls, loss_bbox, loss_centerness, centerness_targets.sum() | |
def loss_by_feat( | |
self, | |
cls_scores: List[Tensor], | |
bbox_preds: List[Tensor], | |
centernesses: List[Tensor], | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None) -> dict: | |
"""Calculate the loss based on the features extracted by the detection | |
head. | |
Args: | |
cls_scores (list[Tensor]): Box scores for each scale level | |
Has shape (N, num_anchors * num_classes, H, W) | |
bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
level with shape (N, num_anchors * 4, H, W) | |
centernesses (list[Tensor]): Centerness for each scale | |
level with shape (N, num_anchors * 1, H, W) | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
assert len(featmap_sizes) == self.prior_generator.num_levels | |
device = cls_scores[0].device | |
anchor_list, valid_flag_list = self.get_anchors( | |
featmap_sizes, batch_img_metas, device=device) | |
cls_reg_targets = self.get_targets( | |
anchor_list, | |
valid_flag_list, | |
batch_gt_instances, | |
batch_img_metas, | |
batch_gt_instances_ignore=batch_gt_instances_ignore) | |
(anchor_list, labels_list, label_weights_list, bbox_targets_list, | |
bbox_weights_list, avg_factor) = cls_reg_targets | |
avg_factor = reduce_mean( | |
torch.tensor(avg_factor, dtype=torch.float, device=device)).item() | |
losses_cls, losses_bbox, loss_centerness, \ | |
bbox_avg_factor = multi_apply( | |
self.loss_by_feat_single, | |
anchor_list, | |
cls_scores, | |
bbox_preds, | |
centernesses, | |
labels_list, | |
label_weights_list, | |
bbox_targets_list, | |
avg_factor=avg_factor) | |
bbox_avg_factor = sum(bbox_avg_factor) | |
bbox_avg_factor = reduce_mean(bbox_avg_factor).clamp_(min=1).item() | |
losses_bbox = list(map(lambda x: x / bbox_avg_factor, losses_bbox)) | |
return dict( | |
loss_cls=losses_cls, | |
loss_bbox=losses_bbox, | |
loss_centerness=loss_centerness) | |
def centerness_target(self, anchors: Tensor, gts: Tensor) -> Tensor: | |
"""Calculate the centerness between anchors and gts. | |
Only calculate pos centerness targets, otherwise there may be nan. | |
Args: | |
anchors (Tensor): Anchors with shape (N, 4), "xyxy" format. | |
gts (Tensor): Ground truth bboxes with shape (N, 4), "xyxy" format. | |
Returns: | |
Tensor: Centerness between anchors and gts. | |
""" | |
anchors_cx = (anchors[:, 2] + anchors[:, 0]) / 2 | |
anchors_cy = (anchors[:, 3] + anchors[:, 1]) / 2 | |
l_ = anchors_cx - gts[:, 0] | |
t_ = anchors_cy - gts[:, 1] | |
r_ = gts[:, 2] - anchors_cx | |
b_ = gts[:, 3] - anchors_cy | |
left_right = torch.stack([l_, r_], dim=1) | |
top_bottom = torch.stack([t_, b_], dim=1) | |
centerness = torch.sqrt( | |
(left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * | |
(top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0])) | |
assert not torch.isnan(centerness).any() | |
return centerness | |
def get_targets(self, | |
anchor_list: List[List[Tensor]], | |
valid_flag_list: List[List[Tensor]], | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
batch_gt_instances_ignore: OptInstanceList = None, | |
unmap_outputs: bool = True) -> tuple: | |
"""Get targets for ATSS head. | |
This method is almost the same as `AnchorHead.get_targets()`. Besides | |
returning the targets as the parent method does, it also returns the | |
anchors as the first element of the returned tuple. | |
""" | |
num_imgs = len(batch_img_metas) | |
assert len(anchor_list) == len(valid_flag_list) == num_imgs | |
# anchor number of multi levels | |
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] | |
num_level_anchors_list = [num_level_anchors] * num_imgs | |
# concat all level anchors and flags to a single tensor | |
for i in range(num_imgs): | |
assert len(anchor_list[i]) == len(valid_flag_list[i]) | |
anchor_list[i] = torch.cat(anchor_list[i]) | |
valid_flag_list[i] = torch.cat(valid_flag_list[i]) | |
# compute targets for each image | |
if batch_gt_instances_ignore is None: | |
batch_gt_instances_ignore = [None] * num_imgs | |
(all_anchors, all_labels, all_label_weights, all_bbox_targets, | |
all_bbox_weights, pos_inds_list, neg_inds_list, | |
sampling_results_list) = multi_apply( | |
self._get_targets_single, | |
anchor_list, | |
valid_flag_list, | |
num_level_anchors_list, | |
batch_gt_instances, | |
batch_img_metas, | |
batch_gt_instances_ignore, | |
unmap_outputs=unmap_outputs) | |
# Get `avg_factor` of all images, which calculate in `SamplingResult`. | |
# When using sampling method, avg_factor is usually the sum of | |
# positive and negative priors. When using `PseudoSampler`, | |
# `avg_factor` is usually equal to the number of positive priors. | |
avg_factor = sum( | |
[results.avg_factor for results in sampling_results_list]) | |
# split targets to a list w.r.t. multiple levels | |
anchors_list = images_to_levels(all_anchors, num_level_anchors) | |
labels_list = images_to_levels(all_labels, num_level_anchors) | |
label_weights_list = images_to_levels(all_label_weights, | |
num_level_anchors) | |
bbox_targets_list = images_to_levels(all_bbox_targets, | |
num_level_anchors) | |
bbox_weights_list = images_to_levels(all_bbox_weights, | |
num_level_anchors) | |
return (anchors_list, labels_list, label_weights_list, | |
bbox_targets_list, bbox_weights_list, avg_factor) | |
def _get_targets_single(self, | |
flat_anchors: Tensor, | |
valid_flags: Tensor, | |
num_level_anchors: List[int], | |
gt_instances: InstanceData, | |
img_meta: dict, | |
gt_instances_ignore: Optional[InstanceData] = None, | |
unmap_outputs: bool = True) -> tuple: | |
"""Compute regression, classification targets for anchors in a single | |
image. | |
Args: | |
flat_anchors (Tensor): Multi-level anchors of the image, which are | |
concatenated into a single tensor of shape (num_anchors ,4) | |
valid_flags (Tensor): Multi level valid flags of the image, | |
which are concatenated into a single tensor of | |
shape (num_anchors,). | |
num_level_anchors (List[int]): Number of anchors of each scale | |
level. | |
gt_instances (:obj:`InstanceData`): Ground truth of instance | |
annotations. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
img_meta (dict): Meta information for current image. | |
gt_instances_ignore (:obj:`InstanceData`, optional): Instances | |
to be ignored during training. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
unmap_outputs (bool): Whether to map outputs back to the original | |
set of anchors. | |
Returns: | |
tuple: N is the number of total anchors in the image. | |
labels (Tensor): Labels of all anchors in the image with shape | |
(N,). | |
label_weights (Tensor): Label weights of all anchor in the | |
image with shape (N,). | |
bbox_targets (Tensor): BBox targets of all anchors in the | |
image with shape (N, 4). | |
bbox_weights (Tensor): BBox weights of all anchors in the | |
image with shape (N, 4) | |
pos_inds (Tensor): Indices of positive anchor with shape | |
(num_pos,). | |
neg_inds (Tensor): Indices of negative anchor with shape | |
(num_neg,). | |
sampling_result (:obj:`SamplingResult`): Sampling results. | |
""" | |
inside_flags = anchor_inside_flags(flat_anchors, valid_flags, | |
img_meta['img_shape'][:2], | |
self.train_cfg['allowed_border']) | |
if not inside_flags.any(): | |
raise ValueError( | |
'There is no valid anchor inside the image boundary. Please ' | |
'check the image size and anchor sizes, or set ' | |
'``allowed_border`` to -1 to skip the condition.') | |
# assign gt and sample anchors | |
anchors = flat_anchors[inside_flags, :] | |
num_level_anchors_inside = self.get_num_level_anchors_inside( | |
num_level_anchors, inside_flags) | |
pred_instances = InstanceData(priors=anchors) | |
assign_result = self.assigner.assign(pred_instances, | |
num_level_anchors_inside, | |
gt_instances, gt_instances_ignore) | |
sampling_result = self.sampler.sample(assign_result, pred_instances, | |
gt_instances) | |
num_valid_anchors = anchors.shape[0] | |
bbox_targets = torch.zeros_like(anchors) | |
bbox_weights = torch.zeros_like(anchors) | |
labels = anchors.new_full((num_valid_anchors, ), | |
self.num_classes, | |
dtype=torch.long) | |
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) | |
pos_inds = sampling_result.pos_inds | |
neg_inds = sampling_result.neg_inds | |
if len(pos_inds) > 0: | |
if self.reg_decoded_bbox: | |
pos_bbox_targets = sampling_result.pos_gt_bboxes | |
else: | |
pos_bbox_targets = self.bbox_coder.encode( | |
sampling_result.pos_priors, sampling_result.pos_gt_bboxes) | |
bbox_targets[pos_inds, :] = pos_bbox_targets | |
bbox_weights[pos_inds, :] = 1.0 | |
labels[pos_inds] = sampling_result.pos_gt_labels | |
if self.train_cfg['pos_weight'] <= 0: | |
label_weights[pos_inds] = 1.0 | |
else: | |
label_weights[pos_inds] = self.train_cfg['pos_weight'] | |
if len(neg_inds) > 0: | |
label_weights[neg_inds] = 1.0 | |
# map up to original set of anchors | |
if unmap_outputs: | |
num_total_anchors = flat_anchors.size(0) | |
anchors = unmap(anchors, num_total_anchors, inside_flags) | |
labels = unmap( | |
labels, num_total_anchors, inside_flags, fill=self.num_classes) | |
label_weights = unmap(label_weights, num_total_anchors, | |
inside_flags) | |
bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) | |
bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) | |
return (anchors, labels, label_weights, bbox_targets, bbox_weights, | |
pos_inds, neg_inds, sampling_result) | |
def get_num_level_anchors_inside(self, num_level_anchors, inside_flags): | |
"""Get the number of valid anchors in every level.""" | |
split_inside_flags = torch.split(inside_flags, num_level_anchors) | |
num_level_anchors_inside = [ | |
int(flags.sum()) for flags in split_inside_flags | |
] | |
return num_level_anchors_inside | |