Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Tuple, Union | |
import mmcv | |
import numpy as np | |
from mmengine.utils import is_str | |
def palette_val(palette: List[tuple]) -> List[tuple]: | |
"""Convert palette to matplotlib palette. | |
Args: | |
palette (List[tuple]): A list of color tuples. | |
Returns: | |
List[tuple[float]]: A list of RGB matplotlib color tuples. | |
""" | |
new_palette = [] | |
for color in palette: | |
color = [c / 255 for c in color] | |
new_palette.append(tuple(color)) | |
return new_palette | |
def get_palette(palette: Union[List[tuple], str, tuple], | |
num_classes: int) -> List[Tuple[int]]: | |
"""Get palette from various inputs. | |
Args: | |
palette (list[tuple] | str | tuple): palette inputs. | |
num_classes (int): the number of classes. | |
Returns: | |
list[tuple[int]]: A list of color tuples. | |
""" | |
assert isinstance(num_classes, int) | |
if isinstance(palette, list): | |
dataset_palette = palette | |
elif isinstance(palette, tuple): | |
dataset_palette = [palette] * num_classes | |
elif palette == 'random' or palette is None: | |
state = np.random.get_state() | |
# random color | |
np.random.seed(42) | |
palette = np.random.randint(0, 256, size=(num_classes, 3)) | |
np.random.set_state(state) | |
dataset_palette = [tuple(c) for c in palette] | |
elif palette == 'coco': | |
from mmdet.datasets import CocoDataset, CocoPanopticDataset | |
dataset_palette = CocoDataset.METAINFO['palette'] | |
if len(dataset_palette) < num_classes: | |
dataset_palette = CocoPanopticDataset.METAINFO['palette'] | |
elif palette == 'citys': | |
from mmdet.datasets import CityscapesDataset | |
dataset_palette = CityscapesDataset.METAINFO['palette'] | |
elif palette == 'voc': | |
from mmdet.datasets import VOCDataset | |
dataset_palette = VOCDataset.METAINFO['palette'] | |
elif is_str(palette): | |
dataset_palette = [mmcv.color_val(palette)[::-1]] * num_classes | |
else: | |
raise TypeError(f'Invalid type for palette: {type(palette)}') | |
assert len(dataset_palette) >= num_classes, \ | |
'The length of palette should not be less than `num_classes`.' | |
return dataset_palette | |
def _get_adaptive_scales(areas: np.ndarray, | |
min_area: int = 800, | |
max_area: int = 30000) -> np.ndarray: | |
"""Get adaptive scales according to areas. | |
The scale range is [0.5, 1.0]. When the area is less than | |
``min_area``, the scale is 0.5 while the area is larger than | |
``max_area``, the scale is 1.0. | |
Args: | |
areas (ndarray): The areas of bboxes or masks with the | |
shape of (n, ). | |
min_area (int): Lower bound areas for adaptive scales. | |
Defaults to 800. | |
max_area (int): Upper bound areas for adaptive scales. | |
Defaults to 30000. | |
Returns: | |
ndarray: The adaotive scales with the shape of (n, ). | |
""" | |
scales = 0.5 + (areas - min_area) / (max_area - min_area) | |
scales = np.clip(scales, 0.5, 1.0) | |
return scales | |
def jitter_color(color: tuple) -> tuple: | |
"""Randomly jitter the given color in order to better distinguish instances | |
with the same class. | |
Args: | |
color (tuple): The RGB color tuple. Each value is between [0, 255]. | |
Returns: | |
tuple: The jittered color tuple. | |
""" | |
jitter = np.random.rand(3) | |
jitter = (jitter / np.linalg.norm(jitter) - 0.5) * 0.5 * 255 | |
color = np.clip(jitter + color, 0, 255).astype(np.uint8) | |
return tuple(color) | |