KyanChen's picture
init
f549064
raw
history blame
16.1 kB
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Sequence, Tuple, Union
import numpy as np
import torch
from torch import Tensor
from mmdet.structures.bbox import BaseBoxes
def find_inside_bboxes(bboxes: Tensor, img_h: int, img_w: int) -> Tensor:
"""Find bboxes as long as a part of bboxes is inside the image.
Args:
bboxes (Tensor): Shape (N, 4).
img_h (int): Image height.
img_w (int): Image width.
Returns:
Tensor: Index of the remaining bboxes.
"""
inside_inds = (bboxes[:, 0] < img_w) & (bboxes[:, 2] > 0) \
& (bboxes[:, 1] < img_h) & (bboxes[:, 3] > 0)
return inside_inds
def bbox_flip(bboxes: Tensor,
img_shape: Tuple[int],
direction: str = 'horizontal') -> Tensor:
"""Flip bboxes horizontally or vertically.
Args:
bboxes (Tensor): Shape (..., 4*k)
img_shape (Tuple[int]): Image shape.
direction (str): Flip direction, options are "horizontal", "vertical",
"diagonal". Default: "horizontal"
Returns:
Tensor: Flipped bboxes.
"""
assert bboxes.shape[-1] % 4 == 0
assert direction in ['horizontal', 'vertical', 'diagonal']
flipped = bboxes.clone()
if direction == 'horizontal':
flipped[..., 0::4] = img_shape[1] - bboxes[..., 2::4]
flipped[..., 2::4] = img_shape[1] - bboxes[..., 0::4]
elif direction == 'vertical':
flipped[..., 1::4] = img_shape[0] - bboxes[..., 3::4]
flipped[..., 3::4] = img_shape[0] - bboxes[..., 1::4]
else:
flipped[..., 0::4] = img_shape[1] - bboxes[..., 2::4]
flipped[..., 1::4] = img_shape[0] - bboxes[..., 3::4]
flipped[..., 2::4] = img_shape[1] - bboxes[..., 0::4]
flipped[..., 3::4] = img_shape[0] - bboxes[..., 1::4]
return flipped
def bbox_mapping(bboxes: Tensor,
img_shape: Tuple[int],
scale_factor: Union[float, Tuple[float]],
flip: bool,
flip_direction: str = 'horizontal') -> Tensor:
"""Map bboxes from the original image scale to testing scale."""
new_bboxes = bboxes * bboxes.new_tensor(scale_factor)
if flip:
new_bboxes = bbox_flip(new_bboxes, img_shape, flip_direction)
return new_bboxes
def bbox_mapping_back(bboxes: Tensor,
img_shape: Tuple[int],
scale_factor: Union[float, Tuple[float]],
flip: bool,
flip_direction: str = 'horizontal') -> Tensor:
"""Map bboxes from testing scale to original image scale."""
new_bboxes = bbox_flip(bboxes, img_shape,
flip_direction) if flip else bboxes
new_bboxes = new_bboxes.view(-1, 4) / new_bboxes.new_tensor(scale_factor)
return new_bboxes.view(bboxes.shape)
def bbox2roi(bbox_list: List[Union[Tensor, BaseBoxes]]) -> Tensor:
"""Convert a list of bboxes to roi format.
Args:
bbox_list (List[Union[Tensor, :obj:`BaseBoxes`]): a list of bboxes
corresponding to a batch of images.
Returns:
Tensor: shape (n, box_dim + 1), where ``box_dim`` depends on the
different box types. For example, If the box type in ``bbox_list``
is HorizontalBoxes, the output shape is (n, 5). Each row of data
indicates [batch_ind, x1, y1, x2, y2].
"""
rois_list = []
for img_id, bboxes in enumerate(bbox_list):
bboxes = get_box_tensor(bboxes)
img_inds = bboxes.new_full((bboxes.size(0), 1), img_id)
rois = torch.cat([img_inds, bboxes], dim=-1)
rois_list.append(rois)
rois = torch.cat(rois_list, 0)
return rois
def roi2bbox(rois: Tensor) -> List[Tensor]:
"""Convert rois to bounding box format.
Args:
rois (Tensor): RoIs with the shape (n, 5) where the first
column indicates batch id of each RoI.
Returns:
List[Tensor]: Converted boxes of corresponding rois.
"""
bbox_list = []
img_ids = torch.unique(rois[:, 0].cpu(), sorted=True)
for img_id in img_ids:
inds = (rois[:, 0] == img_id.item())
bbox = rois[inds, 1:]
bbox_list.append(bbox)
return bbox_list
# TODO remove later
def bbox2result(bboxes: Union[Tensor, np.ndarray], labels: Union[Tensor,
np.ndarray],
num_classes: int) -> List[np.ndarray]:
"""Convert detection results to a list of numpy arrays.
Args:
bboxes (Tensor | np.ndarray): shape (n, 5)
labels (Tensor | np.ndarray): shape (n, )
num_classes (int): class number, including background class
Returns:
List(np.ndarray]): bbox results of each class
"""
if bboxes.shape[0] == 0:
return [np.zeros((0, 5), dtype=np.float32) for i in range(num_classes)]
else:
if isinstance(bboxes, torch.Tensor):
bboxes = bboxes.detach().cpu().numpy()
labels = labels.detach().cpu().numpy()
return [bboxes[labels == i, :] for i in range(num_classes)]
def distance2bbox(
points: Tensor,
distance: Tensor,
max_shape: Optional[Union[Sequence[int], Tensor,
Sequence[Sequence[int]]]] = None
) -> Tensor:
"""Decode distance prediction to bounding box.
Args:
points (Tensor): Shape (B, N, 2) or (N, 2).
distance (Tensor): Distance from the given point to 4
boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4)
max_shape (Union[Sequence[int], Tensor, Sequence[Sequence[int]]],
optional): Maximum bounds for boxes, specifies
(H, W, C) or (H, W). If priors shape is (B, N, 4), then
the max_shape should be a Sequence[Sequence[int]]
and the length of max_shape should also be B.
Returns:
Tensor: Boxes with shape (N, 4) or (B, N, 4)
"""
x1 = points[..., 0] - distance[..., 0]
y1 = points[..., 1] - distance[..., 1]
x2 = points[..., 0] + distance[..., 2]
y2 = points[..., 1] + distance[..., 3]
bboxes = torch.stack([x1, y1, x2, y2], -1)
if max_shape is not None:
if bboxes.dim() == 2 and not torch.onnx.is_in_onnx_export():
# speed up
bboxes[:, 0::2].clamp_(min=0, max=max_shape[1])
bboxes[:, 1::2].clamp_(min=0, max=max_shape[0])
return bboxes
# clip bboxes with dynamic `min` and `max` for onnx
if torch.onnx.is_in_onnx_export():
# TODO: delete
from mmdet.core.export import dynamic_clip_for_onnx
x1, y1, x2, y2 = dynamic_clip_for_onnx(x1, y1, x2, y2, max_shape)
bboxes = torch.stack([x1, y1, x2, y2], dim=-1)
return bboxes
if not isinstance(max_shape, torch.Tensor):
max_shape = x1.new_tensor(max_shape)
max_shape = max_shape[..., :2].type_as(x1)
if max_shape.ndim == 2:
assert bboxes.ndim == 3
assert max_shape.size(0) == bboxes.size(0)
min_xy = x1.new_tensor(0)
max_xy = torch.cat([max_shape, max_shape],
dim=-1).flip(-1).unsqueeze(-2)
bboxes = torch.where(bboxes < min_xy, min_xy, bboxes)
bboxes = torch.where(bboxes > max_xy, max_xy, bboxes)
return bboxes
def bbox2distance(points: Tensor,
bbox: Tensor,
max_dis: Optional[float] = None,
eps: float = 0.1) -> Tensor:
"""Decode bounding box based on distances.
Args:
points (Tensor): Shape (n, 2) or (b, n, 2), [x, y].
bbox (Tensor): Shape (n, 4) or (b, n, 4), "xyxy" format
max_dis (float, optional): Upper bound of the distance.
eps (float): a small value to ensure target < max_dis, instead <=
Returns:
Tensor: Decoded distances.
"""
left = points[..., 0] - bbox[..., 0]
top = points[..., 1] - bbox[..., 1]
right = bbox[..., 2] - points[..., 0]
bottom = bbox[..., 3] - points[..., 1]
if max_dis is not None:
left = left.clamp(min=0, max=max_dis - eps)
top = top.clamp(min=0, max=max_dis - eps)
right = right.clamp(min=0, max=max_dis - eps)
bottom = bottom.clamp(min=0, max=max_dis - eps)
return torch.stack([left, top, right, bottom], -1)
def bbox_rescale(bboxes: Tensor, scale_factor: float = 1.0) -> Tensor:
"""Rescale bounding box w.r.t. scale_factor.
Args:
bboxes (Tensor): Shape (n, 4) for bboxes or (n, 5) for rois
scale_factor (float): rescale factor
Returns:
Tensor: Rescaled bboxes.
"""
if bboxes.size(1) == 5:
bboxes_ = bboxes[:, 1:]
inds_ = bboxes[:, 0]
else:
bboxes_ = bboxes
cx = (bboxes_[:, 0] + bboxes_[:, 2]) * 0.5
cy = (bboxes_[:, 1] + bboxes_[:, 3]) * 0.5
w = bboxes_[:, 2] - bboxes_[:, 0]
h = bboxes_[:, 3] - bboxes_[:, 1]
w = w * scale_factor
h = h * scale_factor
x1 = cx - 0.5 * w
x2 = cx + 0.5 * w
y1 = cy - 0.5 * h
y2 = cy + 0.5 * h
if bboxes.size(1) == 5:
rescaled_bboxes = torch.stack([inds_, x1, y1, x2, y2], dim=-1)
else:
rescaled_bboxes = torch.stack([x1, y1, x2, y2], dim=-1)
return rescaled_bboxes
def bbox_cxcywh_to_xyxy(bbox: Tensor) -> Tensor:
"""Convert bbox coordinates from (cx, cy, w, h) to (x1, y1, x2, y2).
Args:
bbox (Tensor): Shape (n, 4) for bboxes.
Returns:
Tensor: Converted bboxes.
"""
cx, cy, w, h = bbox.split((1, 1, 1, 1), dim=-1)
bbox_new = [(cx - 0.5 * w), (cy - 0.5 * h), (cx + 0.5 * w), (cy + 0.5 * h)]
return torch.cat(bbox_new, dim=-1)
def bbox_xyxy_to_cxcywh(bbox: Tensor) -> Tensor:
"""Convert bbox coordinates from (x1, y1, x2, y2) to (cx, cy, w, h).
Args:
bbox (Tensor): Shape (n, 4) for bboxes.
Returns:
Tensor: Converted bboxes.
"""
x1, y1, x2, y2 = bbox.split((1, 1, 1, 1), dim=-1)
bbox_new = [(x1 + x2) / 2, (y1 + y2) / 2, (x2 - x1), (y2 - y1)]
return torch.cat(bbox_new, dim=-1)
def bbox2corner(bboxes: torch.Tensor) -> torch.Tensor:
"""Convert bbox coordinates from (x1, y1, x2, y2) to corners ((x1, y1),
(x2, y1), (x1, y2), (x2, y2)).
Args:
bboxes (Tensor): Shape (n, 4) for bboxes.
Returns:
Tensor: Shape (n*4, 2) for corners.
"""
x1, y1, x2, y2 = torch.split(bboxes, 1, dim=1)
return torch.cat([x1, y1, x2, y1, x1, y2, x2, y2], dim=1).reshape(-1, 2)
def corner2bbox(corners: torch.Tensor) -> torch.Tensor:
"""Convert bbox coordinates from corners ((x1, y1), (x2, y1), (x1, y2),
(x2, y2)) to (x1, y1, x2, y2).
Args:
corners (Tensor): Shape (n*4, 2) for corners.
Returns:
Tensor: Shape (n, 4) for bboxes.
"""
corners = corners.reshape(-1, 4, 2)
min_xy = corners.min(dim=1)[0]
max_xy = corners.max(dim=1)[0]
return torch.cat([min_xy, max_xy], dim=1)
def bbox_project(
bboxes: Union[torch.Tensor, np.ndarray],
homography_matrix: Union[torch.Tensor, np.ndarray],
img_shape: Optional[Tuple[int, int]] = None
) -> Union[torch.Tensor, np.ndarray]:
"""Geometric transformation for bbox.
Args:
bboxes (Union[torch.Tensor, np.ndarray]): Shape (n, 4) for bboxes.
homography_matrix (Union[torch.Tensor, np.ndarray]):
Shape (3, 3) for geometric transformation.
img_shape (Tuple[int, int], optional): Image shape. Defaults to None.
Returns:
Union[torch.Tensor, np.ndarray]: Converted bboxes.
"""
bboxes_type = type(bboxes)
if bboxes_type is np.ndarray:
bboxes = torch.from_numpy(bboxes)
if isinstance(homography_matrix, np.ndarray):
homography_matrix = torch.from_numpy(homography_matrix)
corners = bbox2corner(bboxes)
corners = torch.cat(
[corners, corners.new_ones(corners.shape[0], 1)], dim=1)
corners = torch.matmul(homography_matrix, corners.t()).t()
# Convert to homogeneous coordinates by normalization
corners = corners[:, :2] / corners[:, 2:3]
bboxes = corner2bbox(corners)
if img_shape is not None:
bboxes[:, 0::2] = bboxes[:, 0::2].clamp(0, img_shape[1])
bboxes[:, 1::2] = bboxes[:, 1::2].clamp(0, img_shape[0])
if bboxes_type is np.ndarray:
bboxes = bboxes.numpy()
return bboxes
def cat_boxes(data_list: List[Union[Tensor, BaseBoxes]],
dim: int = 0) -> Union[Tensor, BaseBoxes]:
"""Concatenate boxes with type of tensor or box type.
Args:
data_list (List[Union[Tensor, :obj:`BaseBoxes`]]): A list of tensors
or box types need to be concatenated.
dim (int): The dimension over which the box are concatenated.
Defaults to 0.
Returns:
Union[Tensor, :obj`BaseBoxes`]: Concatenated results.
"""
if data_list and isinstance(data_list[0], BaseBoxes):
return data_list[0].cat(data_list, dim=dim)
else:
return torch.cat(data_list, dim=dim)
def stack_boxes(data_list: List[Union[Tensor, BaseBoxes]],
dim: int = 0) -> Union[Tensor, BaseBoxes]:
"""Stack boxes with type of tensor or box type.
Args:
data_list (List[Union[Tensor, :obj:`BaseBoxes`]]): A list of tensors
or box types need to be stacked.
dim (int): The dimension over which the box are stacked.
Defaults to 0.
Returns:
Union[Tensor, :obj`BaseBoxes`]: Stacked results.
"""
if data_list and isinstance(data_list[0], BaseBoxes):
return data_list[0].stack(data_list, dim=dim)
else:
return torch.stack(data_list, dim=dim)
def scale_boxes(boxes: Union[Tensor, BaseBoxes],
scale_factor: Tuple[float, float]) -> Union[Tensor, BaseBoxes]:
"""Scale boxes with type of tensor or box type.
Args:
boxes (Tensor or :obj:`BaseBoxes`): boxes need to be scaled. Its type
can be a tensor or a box type.
scale_factor (Tuple[float, float]): factors for scaling boxes.
The length should be 2.
Returns:
Union[Tensor, :obj:`BaseBoxes`]: Scaled boxes.
"""
if isinstance(boxes, BaseBoxes):
boxes.rescale_(scale_factor)
return boxes
else:
# Tensor boxes will be treated as horizontal boxes
repeat_num = int(boxes.size(-1) / 2)
scale_factor = boxes.new_tensor(scale_factor).repeat((1, repeat_num))
return boxes * scale_factor
def get_box_wh(boxes: Union[Tensor, BaseBoxes]) -> Tuple[Tensor, Tensor]:
"""Get the width and height of boxes with type of tensor or box type.
Args:
boxes (Tensor or :obj:`BaseBoxes`): boxes with type of tensor
or box type.
Returns:
Tuple[Tensor, Tensor]: the width and height of boxes.
"""
if isinstance(boxes, BaseBoxes):
w = boxes.widths
h = boxes.heights
else:
# Tensor boxes will be treated as horizontal boxes by defaults
w = boxes[:, 2] - boxes[:, 0]
h = boxes[:, 3] - boxes[:, 1]
return w, h
def get_box_tensor(boxes: Union[Tensor, BaseBoxes]) -> Tensor:
"""Get tensor data from box type boxes.
Args:
boxes (Tensor or BaseBoxes): boxes with type of tensor or box type.
If its type is a tensor, the boxes will be directly returned.
If its type is a box type, the `boxes.tensor` will be returned.
Returns:
Tensor: boxes tensor.
"""
if isinstance(boxes, BaseBoxes):
boxes = boxes.tensor
return boxes
def empty_box_as(boxes: Union[Tensor, BaseBoxes]) -> Union[Tensor, BaseBoxes]:
"""Generate empty box according to input ``boxes` type and device.
Args:
boxes (Tensor or :obj:`BaseBoxes`): boxes with type of tensor
or box type.
Returns:
Union[Tensor, BaseBoxes]: Generated empty box.
"""
if isinstance(boxes, BaseBoxes):
return boxes.empty_boxes()
else:
# Tensor boxes will be treated as horizontal boxes by defaults
return boxes.new_zeros(0, 4)