Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Optional, Sequence, Tuple, Union | |
import numpy as np | |
import torch | |
from torch import Tensor | |
from mmdet.structures.bbox import BaseBoxes | |
def find_inside_bboxes(bboxes: Tensor, img_h: int, img_w: int) -> Tensor: | |
"""Find bboxes as long as a part of bboxes is inside the image. | |
Args: | |
bboxes (Tensor): Shape (N, 4). | |
img_h (int): Image height. | |
img_w (int): Image width. | |
Returns: | |
Tensor: Index of the remaining bboxes. | |
""" | |
inside_inds = (bboxes[:, 0] < img_w) & (bboxes[:, 2] > 0) \ | |
& (bboxes[:, 1] < img_h) & (bboxes[:, 3] > 0) | |
return inside_inds | |
def bbox_flip(bboxes: Tensor, | |
img_shape: Tuple[int], | |
direction: str = 'horizontal') -> Tensor: | |
"""Flip bboxes horizontally or vertically. | |
Args: | |
bboxes (Tensor): Shape (..., 4*k) | |
img_shape (Tuple[int]): Image shape. | |
direction (str): Flip direction, options are "horizontal", "vertical", | |
"diagonal". Default: "horizontal" | |
Returns: | |
Tensor: Flipped bboxes. | |
""" | |
assert bboxes.shape[-1] % 4 == 0 | |
assert direction in ['horizontal', 'vertical', 'diagonal'] | |
flipped = bboxes.clone() | |
if direction == 'horizontal': | |
flipped[..., 0::4] = img_shape[1] - bboxes[..., 2::4] | |
flipped[..., 2::4] = img_shape[1] - bboxes[..., 0::4] | |
elif direction == 'vertical': | |
flipped[..., 1::4] = img_shape[0] - bboxes[..., 3::4] | |
flipped[..., 3::4] = img_shape[0] - bboxes[..., 1::4] | |
else: | |
flipped[..., 0::4] = img_shape[1] - bboxes[..., 2::4] | |
flipped[..., 1::4] = img_shape[0] - bboxes[..., 3::4] | |
flipped[..., 2::4] = img_shape[1] - bboxes[..., 0::4] | |
flipped[..., 3::4] = img_shape[0] - bboxes[..., 1::4] | |
return flipped | |
def bbox_mapping(bboxes: Tensor, | |
img_shape: Tuple[int], | |
scale_factor: Union[float, Tuple[float]], | |
flip: bool, | |
flip_direction: str = 'horizontal') -> Tensor: | |
"""Map bboxes from the original image scale to testing scale.""" | |
new_bboxes = bboxes * bboxes.new_tensor(scale_factor) | |
if flip: | |
new_bboxes = bbox_flip(new_bboxes, img_shape, flip_direction) | |
return new_bboxes | |
def bbox_mapping_back(bboxes: Tensor, | |
img_shape: Tuple[int], | |
scale_factor: Union[float, Tuple[float]], | |
flip: bool, | |
flip_direction: str = 'horizontal') -> Tensor: | |
"""Map bboxes from testing scale to original image scale.""" | |
new_bboxes = bbox_flip(bboxes, img_shape, | |
flip_direction) if flip else bboxes | |
new_bboxes = new_bboxes.view(-1, 4) / new_bboxes.new_tensor(scale_factor) | |
return new_bboxes.view(bboxes.shape) | |
def bbox2roi(bbox_list: List[Union[Tensor, BaseBoxes]]) -> Tensor: | |
"""Convert a list of bboxes to roi format. | |
Args: | |
bbox_list (List[Union[Tensor, :obj:`BaseBoxes`]): a list of bboxes | |
corresponding to a batch of images. | |
Returns: | |
Tensor: shape (n, box_dim + 1), where ``box_dim`` depends on the | |
different box types. For example, If the box type in ``bbox_list`` | |
is HorizontalBoxes, the output shape is (n, 5). Each row of data | |
indicates [batch_ind, x1, y1, x2, y2]. | |
""" | |
rois_list = [] | |
for img_id, bboxes in enumerate(bbox_list): | |
bboxes = get_box_tensor(bboxes) | |
img_inds = bboxes.new_full((bboxes.size(0), 1), img_id) | |
rois = torch.cat([img_inds, bboxes], dim=-1) | |
rois_list.append(rois) | |
rois = torch.cat(rois_list, 0) | |
return rois | |
def roi2bbox(rois: Tensor) -> List[Tensor]: | |
"""Convert rois to bounding box format. | |
Args: | |
rois (Tensor): RoIs with the shape (n, 5) where the first | |
column indicates batch id of each RoI. | |
Returns: | |
List[Tensor]: Converted boxes of corresponding rois. | |
""" | |
bbox_list = [] | |
img_ids = torch.unique(rois[:, 0].cpu(), sorted=True) | |
for img_id in img_ids: | |
inds = (rois[:, 0] == img_id.item()) | |
bbox = rois[inds, 1:] | |
bbox_list.append(bbox) | |
return bbox_list | |
# TODO remove later | |
def bbox2result(bboxes: Union[Tensor, np.ndarray], labels: Union[Tensor, | |
np.ndarray], | |
num_classes: int) -> List[np.ndarray]: | |
"""Convert detection results to a list of numpy arrays. | |
Args: | |
bboxes (Tensor | np.ndarray): shape (n, 5) | |
labels (Tensor | np.ndarray): shape (n, ) | |
num_classes (int): class number, including background class | |
Returns: | |
List(np.ndarray]): bbox results of each class | |
""" | |
if bboxes.shape[0] == 0: | |
return [np.zeros((0, 5), dtype=np.float32) for i in range(num_classes)] | |
else: | |
if isinstance(bboxes, torch.Tensor): | |
bboxes = bboxes.detach().cpu().numpy() | |
labels = labels.detach().cpu().numpy() | |
return [bboxes[labels == i, :] for i in range(num_classes)] | |
def distance2bbox( | |
points: Tensor, | |
distance: Tensor, | |
max_shape: Optional[Union[Sequence[int], Tensor, | |
Sequence[Sequence[int]]]] = None | |
) -> Tensor: | |
"""Decode distance prediction to bounding box. | |
Args: | |
points (Tensor): Shape (B, N, 2) or (N, 2). | |
distance (Tensor): Distance from the given point to 4 | |
boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4) | |
max_shape (Union[Sequence[int], Tensor, Sequence[Sequence[int]]], | |
optional): Maximum bounds for boxes, specifies | |
(H, W, C) or (H, W). If priors shape is (B, N, 4), then | |
the max_shape should be a Sequence[Sequence[int]] | |
and the length of max_shape should also be B. | |
Returns: | |
Tensor: Boxes with shape (N, 4) or (B, N, 4) | |
""" | |
x1 = points[..., 0] - distance[..., 0] | |
y1 = points[..., 1] - distance[..., 1] | |
x2 = points[..., 0] + distance[..., 2] | |
y2 = points[..., 1] + distance[..., 3] | |
bboxes = torch.stack([x1, y1, x2, y2], -1) | |
if max_shape is not None: | |
if bboxes.dim() == 2 and not torch.onnx.is_in_onnx_export(): | |
# speed up | |
bboxes[:, 0::2].clamp_(min=0, max=max_shape[1]) | |
bboxes[:, 1::2].clamp_(min=0, max=max_shape[0]) | |
return bboxes | |
# clip bboxes with dynamic `min` and `max` for onnx | |
if torch.onnx.is_in_onnx_export(): | |
# TODO: delete | |
from mmdet.core.export import dynamic_clip_for_onnx | |
x1, y1, x2, y2 = dynamic_clip_for_onnx(x1, y1, x2, y2, max_shape) | |
bboxes = torch.stack([x1, y1, x2, y2], dim=-1) | |
return bboxes | |
if not isinstance(max_shape, torch.Tensor): | |
max_shape = x1.new_tensor(max_shape) | |
max_shape = max_shape[..., :2].type_as(x1) | |
if max_shape.ndim == 2: | |
assert bboxes.ndim == 3 | |
assert max_shape.size(0) == bboxes.size(0) | |
min_xy = x1.new_tensor(0) | |
max_xy = torch.cat([max_shape, max_shape], | |
dim=-1).flip(-1).unsqueeze(-2) | |
bboxes = torch.where(bboxes < min_xy, min_xy, bboxes) | |
bboxes = torch.where(bboxes > max_xy, max_xy, bboxes) | |
return bboxes | |
def bbox2distance(points: Tensor, | |
bbox: Tensor, | |
max_dis: Optional[float] = None, | |
eps: float = 0.1) -> Tensor: | |
"""Decode bounding box based on distances. | |
Args: | |
points (Tensor): Shape (n, 2) or (b, n, 2), [x, y]. | |
bbox (Tensor): Shape (n, 4) or (b, n, 4), "xyxy" format | |
max_dis (float, optional): Upper bound of the distance. | |
eps (float): a small value to ensure target < max_dis, instead <= | |
Returns: | |
Tensor: Decoded distances. | |
""" | |
left = points[..., 0] - bbox[..., 0] | |
top = points[..., 1] - bbox[..., 1] | |
right = bbox[..., 2] - points[..., 0] | |
bottom = bbox[..., 3] - points[..., 1] | |
if max_dis is not None: | |
left = left.clamp(min=0, max=max_dis - eps) | |
top = top.clamp(min=0, max=max_dis - eps) | |
right = right.clamp(min=0, max=max_dis - eps) | |
bottom = bottom.clamp(min=0, max=max_dis - eps) | |
return torch.stack([left, top, right, bottom], -1) | |
def bbox_rescale(bboxes: Tensor, scale_factor: float = 1.0) -> Tensor: | |
"""Rescale bounding box w.r.t. scale_factor. | |
Args: | |
bboxes (Tensor): Shape (n, 4) for bboxes or (n, 5) for rois | |
scale_factor (float): rescale factor | |
Returns: | |
Tensor: Rescaled bboxes. | |
""" | |
if bboxes.size(1) == 5: | |
bboxes_ = bboxes[:, 1:] | |
inds_ = bboxes[:, 0] | |
else: | |
bboxes_ = bboxes | |
cx = (bboxes_[:, 0] + bboxes_[:, 2]) * 0.5 | |
cy = (bboxes_[:, 1] + bboxes_[:, 3]) * 0.5 | |
w = bboxes_[:, 2] - bboxes_[:, 0] | |
h = bboxes_[:, 3] - bboxes_[:, 1] | |
w = w * scale_factor | |
h = h * scale_factor | |
x1 = cx - 0.5 * w | |
x2 = cx + 0.5 * w | |
y1 = cy - 0.5 * h | |
y2 = cy + 0.5 * h | |
if bboxes.size(1) == 5: | |
rescaled_bboxes = torch.stack([inds_, x1, y1, x2, y2], dim=-1) | |
else: | |
rescaled_bboxes = torch.stack([x1, y1, x2, y2], dim=-1) | |
return rescaled_bboxes | |
def bbox_cxcywh_to_xyxy(bbox: Tensor) -> Tensor: | |
"""Convert bbox coordinates from (cx, cy, w, h) to (x1, y1, x2, y2). | |
Args: | |
bbox (Tensor): Shape (n, 4) for bboxes. | |
Returns: | |
Tensor: Converted bboxes. | |
""" | |
cx, cy, w, h = bbox.split((1, 1, 1, 1), dim=-1) | |
bbox_new = [(cx - 0.5 * w), (cy - 0.5 * h), (cx + 0.5 * w), (cy + 0.5 * h)] | |
return torch.cat(bbox_new, dim=-1) | |
def bbox_xyxy_to_cxcywh(bbox: Tensor) -> Tensor: | |
"""Convert bbox coordinates from (x1, y1, x2, y2) to (cx, cy, w, h). | |
Args: | |
bbox (Tensor): Shape (n, 4) for bboxes. | |
Returns: | |
Tensor: Converted bboxes. | |
""" | |
x1, y1, x2, y2 = bbox.split((1, 1, 1, 1), dim=-1) | |
bbox_new = [(x1 + x2) / 2, (y1 + y2) / 2, (x2 - x1), (y2 - y1)] | |
return torch.cat(bbox_new, dim=-1) | |
def bbox2corner(bboxes: torch.Tensor) -> torch.Tensor: | |
"""Convert bbox coordinates from (x1, y1, x2, y2) to corners ((x1, y1), | |
(x2, y1), (x1, y2), (x2, y2)). | |
Args: | |
bboxes (Tensor): Shape (n, 4) for bboxes. | |
Returns: | |
Tensor: Shape (n*4, 2) for corners. | |
""" | |
x1, y1, x2, y2 = torch.split(bboxes, 1, dim=1) | |
return torch.cat([x1, y1, x2, y1, x1, y2, x2, y2], dim=1).reshape(-1, 2) | |
def corner2bbox(corners: torch.Tensor) -> torch.Tensor: | |
"""Convert bbox coordinates from corners ((x1, y1), (x2, y1), (x1, y2), | |
(x2, y2)) to (x1, y1, x2, y2). | |
Args: | |
corners (Tensor): Shape (n*4, 2) for corners. | |
Returns: | |
Tensor: Shape (n, 4) for bboxes. | |
""" | |
corners = corners.reshape(-1, 4, 2) | |
min_xy = corners.min(dim=1)[0] | |
max_xy = corners.max(dim=1)[0] | |
return torch.cat([min_xy, max_xy], dim=1) | |
def bbox_project( | |
bboxes: Union[torch.Tensor, np.ndarray], | |
homography_matrix: Union[torch.Tensor, np.ndarray], | |
img_shape: Optional[Tuple[int, int]] = None | |
) -> Union[torch.Tensor, np.ndarray]: | |
"""Geometric transformation for bbox. | |
Args: | |
bboxes (Union[torch.Tensor, np.ndarray]): Shape (n, 4) for bboxes. | |
homography_matrix (Union[torch.Tensor, np.ndarray]): | |
Shape (3, 3) for geometric transformation. | |
img_shape (Tuple[int, int], optional): Image shape. Defaults to None. | |
Returns: | |
Union[torch.Tensor, np.ndarray]: Converted bboxes. | |
""" | |
bboxes_type = type(bboxes) | |
if bboxes_type is np.ndarray: | |
bboxes = torch.from_numpy(bboxes) | |
if isinstance(homography_matrix, np.ndarray): | |
homography_matrix = torch.from_numpy(homography_matrix) | |
corners = bbox2corner(bboxes) | |
corners = torch.cat( | |
[corners, corners.new_ones(corners.shape[0], 1)], dim=1) | |
corners = torch.matmul(homography_matrix, corners.t()).t() | |
# Convert to homogeneous coordinates by normalization | |
corners = corners[:, :2] / corners[:, 2:3] | |
bboxes = corner2bbox(corners) | |
if img_shape is not None: | |
bboxes[:, 0::2] = bboxes[:, 0::2].clamp(0, img_shape[1]) | |
bboxes[:, 1::2] = bboxes[:, 1::2].clamp(0, img_shape[0]) | |
if bboxes_type is np.ndarray: | |
bboxes = bboxes.numpy() | |
return bboxes | |
def cat_boxes(data_list: List[Union[Tensor, BaseBoxes]], | |
dim: int = 0) -> Union[Tensor, BaseBoxes]: | |
"""Concatenate boxes with type of tensor or box type. | |
Args: | |
data_list (List[Union[Tensor, :obj:`BaseBoxes`]]): A list of tensors | |
or box types need to be concatenated. | |
dim (int): The dimension over which the box are concatenated. | |
Defaults to 0. | |
Returns: | |
Union[Tensor, :obj`BaseBoxes`]: Concatenated results. | |
""" | |
if data_list and isinstance(data_list[0], BaseBoxes): | |
return data_list[0].cat(data_list, dim=dim) | |
else: | |
return torch.cat(data_list, dim=dim) | |
def stack_boxes(data_list: List[Union[Tensor, BaseBoxes]], | |
dim: int = 0) -> Union[Tensor, BaseBoxes]: | |
"""Stack boxes with type of tensor or box type. | |
Args: | |
data_list (List[Union[Tensor, :obj:`BaseBoxes`]]): A list of tensors | |
or box types need to be stacked. | |
dim (int): The dimension over which the box are stacked. | |
Defaults to 0. | |
Returns: | |
Union[Tensor, :obj`BaseBoxes`]: Stacked results. | |
""" | |
if data_list and isinstance(data_list[0], BaseBoxes): | |
return data_list[0].stack(data_list, dim=dim) | |
else: | |
return torch.stack(data_list, dim=dim) | |
def scale_boxes(boxes: Union[Tensor, BaseBoxes], | |
scale_factor: Tuple[float, float]) -> Union[Tensor, BaseBoxes]: | |
"""Scale boxes with type of tensor or box type. | |
Args: | |
boxes (Tensor or :obj:`BaseBoxes`): boxes need to be scaled. Its type | |
can be a tensor or a box type. | |
scale_factor (Tuple[float, float]): factors for scaling boxes. | |
The length should be 2. | |
Returns: | |
Union[Tensor, :obj:`BaseBoxes`]: Scaled boxes. | |
""" | |
if isinstance(boxes, BaseBoxes): | |
boxes.rescale_(scale_factor) | |
return boxes | |
else: | |
# Tensor boxes will be treated as horizontal boxes | |
repeat_num = int(boxes.size(-1) / 2) | |
scale_factor = boxes.new_tensor(scale_factor).repeat((1, repeat_num)) | |
return boxes * scale_factor | |
def get_box_wh(boxes: Union[Tensor, BaseBoxes]) -> Tuple[Tensor, Tensor]: | |
"""Get the width and height of boxes with type of tensor or box type. | |
Args: | |
boxes (Tensor or :obj:`BaseBoxes`): boxes with type of tensor | |
or box type. | |
Returns: | |
Tuple[Tensor, Tensor]: the width and height of boxes. | |
""" | |
if isinstance(boxes, BaseBoxes): | |
w = boxes.widths | |
h = boxes.heights | |
else: | |
# Tensor boxes will be treated as horizontal boxes by defaults | |
w = boxes[:, 2] - boxes[:, 0] | |
h = boxes[:, 3] - boxes[:, 1] | |
return w, h | |
def get_box_tensor(boxes: Union[Tensor, BaseBoxes]) -> Tensor: | |
"""Get tensor data from box type boxes. | |
Args: | |
boxes (Tensor or BaseBoxes): boxes with type of tensor or box type. | |
If its type is a tensor, the boxes will be directly returned. | |
If its type is a box type, the `boxes.tensor` will be returned. | |
Returns: | |
Tensor: boxes tensor. | |
""" | |
if isinstance(boxes, BaseBoxes): | |
boxes = boxes.tensor | |
return boxes | |
def empty_box_as(boxes: Union[Tensor, BaseBoxes]) -> Union[Tensor, BaseBoxes]: | |
"""Generate empty box according to input ``boxes` type and device. | |
Args: | |
boxes (Tensor or :obj:`BaseBoxes`): boxes with type of tensor | |
or box type. | |
Returns: | |
Union[Tensor, BaseBoxes]: Generated empty box. | |
""" | |
if isinstance(boxes, BaseBoxes): | |
return boxes.empty_boxes() | |
else: | |
# Tensor boxes will be treated as horizontal boxes by defaults | |
return boxes.new_zeros(0, 4) | |