Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Dict, List, Tuple | |
import torch | |
from mmengine.structures import InstanceData | |
from torch import Tensor | |
from mmdet.registry import MODELS | |
from mmdet.structures import SampleList | |
from mmdet.structures.bbox import bbox_cxcywh_to_xyxy, bbox_xyxy_to_cxcywh | |
from mmdet.utils import InstanceList, OptInstanceList, reduce_mean | |
from ..utils import multi_apply | |
from .deformable_detr_head import DeformableDETRHead | |
class DINOHead(DeformableDETRHead): | |
r"""Head of the DINO: DETR with Improved DeNoising Anchor Boxes | |
for End-to-End Object Detection | |
Code is modified from the `official github repo | |
<https://github.com/IDEA-Research/DINO>`_. | |
More details can be found in the `paper | |
<https://arxiv.org/abs/2203.03605>`_ . | |
""" | |
def loss(self, hidden_states: Tensor, references: List[Tensor], | |
enc_outputs_class: Tensor, enc_outputs_coord: Tensor, | |
batch_data_samples: SampleList, dn_meta: Dict[str, int]) -> dict: | |
"""Perform forward propagation and loss calculation of the detection | |
head on the queries of the upstream network. | |
Args: | |
hidden_states (Tensor): Hidden states output from each decoder | |
layer, has shape (num_decoder_layers, bs, num_queries_total, | |
dim), where `num_queries_total` is the sum of | |
`num_denoising_queries` and `num_matching_queries` when | |
`self.training` is `True`, else `num_matching_queries`. | |
references (list[Tensor]): List of the reference from the decoder. | |
The first reference is the `init_reference` (initial) and the | |
other num_decoder_layers(6) references are `inter_references` | |
(intermediate). The `init_reference` has shape (bs, | |
num_queries_total, 4) and each `inter_reference` has shape | |
(bs, num_queries, 4) with the last dimension arranged as | |
(cx, cy, w, h). | |
enc_outputs_class (Tensor): The score of each point on encode | |
feature map, has shape (bs, num_feat_points, cls_out_channels). | |
enc_outputs_coord (Tensor): The proposal generate from the | |
encode feature map, has shape (bs, num_feat_points, 4) with the | |
last dimension arranged as (cx, cy, w, h). | |
batch_data_samples (list[:obj:`DetDataSample`]): The Data | |
Samples. It usually includes information such as | |
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. | |
dn_meta (Dict[str, int]): The dictionary saves information about | |
group collation, including 'num_denoising_queries' and | |
'num_denoising_groups'. It will be used for split outputs of | |
denoising and matching parts and loss calculation. | |
Returns: | |
dict: A dictionary of loss components. | |
""" | |
batch_gt_instances = [] | |
batch_img_metas = [] | |
for data_sample in batch_data_samples: | |
batch_img_metas.append(data_sample.metainfo) | |
batch_gt_instances.append(data_sample.gt_instances) | |
outs = self(hidden_states, references) | |
loss_inputs = outs + (enc_outputs_class, enc_outputs_coord, | |
batch_gt_instances, batch_img_metas, dn_meta) | |
losses = self.loss_by_feat(*loss_inputs) | |
return losses | |
def loss_by_feat( | |
self, | |
all_layers_cls_scores: Tensor, | |
all_layers_bbox_preds: Tensor, | |
enc_cls_scores: Tensor, | |
enc_bbox_preds: Tensor, | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
dn_meta: Dict[str, int], | |
batch_gt_instances_ignore: OptInstanceList = None | |
) -> Dict[str, Tensor]: | |
"""Loss function. | |
Args: | |
all_layers_cls_scores (Tensor): Classification scores of all | |
decoder layers, has shape (num_decoder_layers, bs, | |
num_queries_total, cls_out_channels), where | |
`num_queries_total` is the sum of `num_denoising_queries` | |
and `num_matching_queries`. | |
all_layers_bbox_preds (Tensor): Regression outputs of all decoder | |
layers. Each is a 4D-tensor with normalized coordinate format | |
(cx, cy, w, h) and has shape (num_decoder_layers, bs, | |
num_queries_total, 4). | |
enc_cls_scores (Tensor): The score of each point on encode | |
feature map, has shape (bs, num_feat_points, cls_out_channels). | |
enc_bbox_preds (Tensor): The proposal generate from the encode | |
feature map, has shape (bs, num_feat_points, 4) with the last | |
dimension arranged as (cx, cy, w, h). | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
dn_meta (Dict[str, int]): The dictionary saves information about | |
group collation, including 'num_denoising_queries' and | |
'num_denoising_groups'. It will be used for split outputs of | |
denoising and matching parts and loss calculation. | |
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): | |
Batch of gt_instances_ignore. It includes ``bboxes`` attribute | |
data that is ignored during training and testing. | |
Defaults to None. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
# extract denoising and matching part of outputs | |
(all_layers_matching_cls_scores, all_layers_matching_bbox_preds, | |
all_layers_denoising_cls_scores, all_layers_denoising_bbox_preds) = \ | |
self.split_outputs( | |
all_layers_cls_scores, all_layers_bbox_preds, dn_meta) | |
loss_dict = super(DeformableDETRHead, self).loss_by_feat( | |
all_layers_matching_cls_scores, all_layers_matching_bbox_preds, | |
batch_gt_instances, batch_img_metas, batch_gt_instances_ignore) | |
# NOTE DETRHead.loss_by_feat but not DeformableDETRHead.loss_by_feat | |
# is called, because the encoder loss calculations are different | |
# between DINO and DeformableDETR. | |
# loss of proposal generated from encode feature map. | |
if enc_cls_scores is not None: | |
# NOTE The enc_loss calculation of the DINO is | |
# different from that of Deformable DETR. | |
enc_loss_cls, enc_losses_bbox, enc_losses_iou = \ | |
self.loss_by_feat_single( | |
enc_cls_scores, enc_bbox_preds, | |
batch_gt_instances=batch_gt_instances, | |
batch_img_metas=batch_img_metas) | |
loss_dict['enc_loss_cls'] = enc_loss_cls | |
loss_dict['enc_loss_bbox'] = enc_losses_bbox | |
loss_dict['enc_loss_iou'] = enc_losses_iou | |
if all_layers_denoising_cls_scores is not None: | |
# calculate denoising loss from all decoder layers | |
dn_losses_cls, dn_losses_bbox, dn_losses_iou = self.loss_dn( | |
all_layers_denoising_cls_scores, | |
all_layers_denoising_bbox_preds, | |
batch_gt_instances=batch_gt_instances, | |
batch_img_metas=batch_img_metas, | |
dn_meta=dn_meta) | |
# collate denoising loss | |
loss_dict['dn_loss_cls'] = dn_losses_cls[-1] | |
loss_dict['dn_loss_bbox'] = dn_losses_bbox[-1] | |
loss_dict['dn_loss_iou'] = dn_losses_iou[-1] | |
for num_dec_layer, (loss_cls_i, loss_bbox_i, loss_iou_i) in \ | |
enumerate(zip(dn_losses_cls[:-1], dn_losses_bbox[:-1], | |
dn_losses_iou[:-1])): | |
loss_dict[f'd{num_dec_layer}.dn_loss_cls'] = loss_cls_i | |
loss_dict[f'd{num_dec_layer}.dn_loss_bbox'] = loss_bbox_i | |
loss_dict[f'd{num_dec_layer}.dn_loss_iou'] = loss_iou_i | |
return loss_dict | |
def loss_dn(self, all_layers_denoising_cls_scores: Tensor, | |
all_layers_denoising_bbox_preds: Tensor, | |
batch_gt_instances: InstanceList, batch_img_metas: List[dict], | |
dn_meta: Dict[str, int]) -> Tuple[List[Tensor]]: | |
"""Calculate denoising loss. | |
Args: | |
all_layers_denoising_cls_scores (Tensor): Classification scores of | |
all decoder layers in denoising part, has shape ( | |
num_decoder_layers, bs, num_denoising_queries, | |
cls_out_channels). | |
all_layers_denoising_bbox_preds (Tensor): Regression outputs of all | |
decoder layers in denoising part. Each is a 4D-tensor with | |
normalized coordinate format (cx, cy, w, h) and has shape | |
(num_decoder_layers, bs, num_denoising_queries, 4). | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
dn_meta (Dict[str, int]): The dictionary saves information about | |
group collation, including 'num_denoising_queries' and | |
'num_denoising_groups'. It will be used for split outputs of | |
denoising and matching parts and loss calculation. | |
Returns: | |
Tuple[List[Tensor]]: The loss_dn_cls, loss_dn_bbox, and loss_dn_iou | |
of each decoder layers. | |
""" | |
return multi_apply( | |
self._loss_dn_single, | |
all_layers_denoising_cls_scores, | |
all_layers_denoising_bbox_preds, | |
batch_gt_instances=batch_gt_instances, | |
batch_img_metas=batch_img_metas, | |
dn_meta=dn_meta) | |
def _loss_dn_single(self, dn_cls_scores: Tensor, dn_bbox_preds: Tensor, | |
batch_gt_instances: InstanceList, | |
batch_img_metas: List[dict], | |
dn_meta: Dict[str, int]) -> Tuple[Tensor]: | |
"""Denoising loss for outputs from a single decoder layer. | |
Args: | |
dn_cls_scores (Tensor): Classification scores of a single decoder | |
layer in denoising part, has shape (bs, num_denoising_queries, | |
cls_out_channels). | |
dn_bbox_preds (Tensor): Regression outputs of a single decoder | |
layer in denoising part. Each is a 4D-tensor with normalized | |
coordinate format (cx, cy, w, h) and has shape | |
(bs, num_denoising_queries, 4). | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
dn_meta (Dict[str, int]): The dictionary saves information about | |
group collation, including 'num_denoising_queries' and | |
'num_denoising_groups'. It will be used for split outputs of | |
denoising and matching parts and loss calculation. | |
Returns: | |
Tuple[Tensor]: A tuple including `loss_cls`, `loss_box` and | |
`loss_iou`. | |
""" | |
cls_reg_targets = self.get_dn_targets(batch_gt_instances, | |
batch_img_metas, dn_meta) | |
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, | |
num_total_pos, num_total_neg) = cls_reg_targets | |
labels = torch.cat(labels_list, 0) | |
label_weights = torch.cat(label_weights_list, 0) | |
bbox_targets = torch.cat(bbox_targets_list, 0) | |
bbox_weights = torch.cat(bbox_weights_list, 0) | |
# classification loss | |
cls_scores = dn_cls_scores.reshape(-1, self.cls_out_channels) | |
# construct weighted avg_factor to match with the official DETR repo | |
cls_avg_factor = \ | |
num_total_pos * 1.0 + num_total_neg * self.bg_cls_weight | |
if self.sync_cls_avg_factor: | |
cls_avg_factor = reduce_mean( | |
cls_scores.new_tensor([cls_avg_factor])) | |
cls_avg_factor = max(cls_avg_factor, 1) | |
if len(cls_scores) > 0: | |
loss_cls = self.loss_cls( | |
cls_scores, labels, label_weights, avg_factor=cls_avg_factor) | |
else: | |
loss_cls = torch.zeros( | |
1, dtype=cls_scores.dtype, device=cls_scores.device) | |
# Compute the average number of gt boxes across all gpus, for | |
# normalization purposes | |
num_total_pos = loss_cls.new_tensor([num_total_pos]) | |
num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item() | |
# construct factors used for rescale bboxes | |
factors = [] | |
for img_meta, bbox_pred in zip(batch_img_metas, dn_bbox_preds): | |
img_h, img_w = img_meta['img_shape'] | |
factor = bbox_pred.new_tensor([img_w, img_h, img_w, | |
img_h]).unsqueeze(0).repeat( | |
bbox_pred.size(0), 1) | |
factors.append(factor) | |
factors = torch.cat(factors) | |
# DETR regress the relative position of boxes (cxcywh) in the image, | |
# thus the learning target is normalized by the image size. So here | |
# we need to re-scale them for calculating IoU loss | |
bbox_preds = dn_bbox_preds.reshape(-1, 4) | |
bboxes = bbox_cxcywh_to_xyxy(bbox_preds) * factors | |
bboxes_gt = bbox_cxcywh_to_xyxy(bbox_targets) * factors | |
# regression IoU loss, defaultly GIoU loss | |
loss_iou = self.loss_iou( | |
bboxes, bboxes_gt, bbox_weights, avg_factor=num_total_pos) | |
# regression L1 loss | |
loss_bbox = self.loss_bbox( | |
bbox_preds, bbox_targets, bbox_weights, avg_factor=num_total_pos) | |
return loss_cls, loss_bbox, loss_iou | |
def get_dn_targets(self, batch_gt_instances: InstanceList, | |
batch_img_metas: dict, dn_meta: Dict[str, | |
int]) -> tuple: | |
"""Get targets in denoising part for a batch of images. | |
Args: | |
batch_gt_instances (list[:obj:`InstanceData`]): Batch of | |
gt_instance. It usually includes ``bboxes`` and ``labels`` | |
attributes. | |
batch_img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
dn_meta (Dict[str, int]): The dictionary saves information about | |
group collation, including 'num_denoising_queries' and | |
'num_denoising_groups'. It will be used for split outputs of | |
denoising and matching parts and loss calculation. | |
Returns: | |
tuple: a tuple containing the following targets. | |
- labels_list (list[Tensor]): Labels for all images. | |
- label_weights_list (list[Tensor]): Label weights for all images. | |
- bbox_targets_list (list[Tensor]): BBox targets for all images. | |
- bbox_weights_list (list[Tensor]): BBox weights for all images. | |
- num_total_pos (int): Number of positive samples in all images. | |
- num_total_neg (int): Number of negative samples in all images. | |
""" | |
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, | |
pos_inds_list, neg_inds_list) = multi_apply( | |
self._get_dn_targets_single, | |
batch_gt_instances, | |
batch_img_metas, | |
dn_meta=dn_meta) | |
num_total_pos = sum((inds.numel() for inds in pos_inds_list)) | |
num_total_neg = sum((inds.numel() for inds in neg_inds_list)) | |
return (labels_list, label_weights_list, bbox_targets_list, | |
bbox_weights_list, num_total_pos, num_total_neg) | |
def _get_dn_targets_single(self, gt_instances: InstanceData, | |
img_meta: dict, dn_meta: Dict[str, | |
int]) -> tuple: | |
"""Get targets in denoising part for one image. | |
Args: | |
gt_instances (:obj:`InstanceData`): Ground truth of instance | |
annotations. It should includes ``bboxes`` and ``labels`` | |
attributes. | |
img_meta (dict): Meta information for one image. | |
dn_meta (Dict[str, int]): The dictionary saves information about | |
group collation, including 'num_denoising_queries' and | |
'num_denoising_groups'. It will be used for split outputs of | |
denoising and matching parts and loss calculation. | |
Returns: | |
tuple[Tensor]: a tuple containing the following for one image. | |
- labels (Tensor): Labels of each image. | |
- label_weights (Tensor]): Label weights of each image. | |
- bbox_targets (Tensor): BBox targets of each image. | |
- bbox_weights (Tensor): BBox weights of each image. | |
- pos_inds (Tensor): Sampled positive indices for each image. | |
- neg_inds (Tensor): Sampled negative indices for each image. | |
""" | |
gt_bboxes = gt_instances.bboxes | |
gt_labels = gt_instances.labels | |
num_groups = dn_meta['num_denoising_groups'] | |
num_denoising_queries = dn_meta['num_denoising_queries'] | |
num_queries_each_group = int(num_denoising_queries / num_groups) | |
device = gt_bboxes.device | |
if len(gt_labels) > 0: | |
t = torch.arange(len(gt_labels), dtype=torch.long, device=device) | |
t = t.unsqueeze(0).repeat(num_groups, 1) | |
pos_assigned_gt_inds = t.flatten() | |
pos_inds = torch.arange( | |
num_groups, dtype=torch.long, device=device) | |
pos_inds = pos_inds.unsqueeze(1) * num_queries_each_group + t | |
pos_inds = pos_inds.flatten() | |
else: | |
pos_inds = pos_assigned_gt_inds = \ | |
gt_bboxes.new_tensor([], dtype=torch.long) | |
neg_inds = pos_inds + num_queries_each_group // 2 | |
# label targets | |
labels = gt_bboxes.new_full((num_denoising_queries, ), | |
self.num_classes, | |
dtype=torch.long) | |
labels[pos_inds] = gt_labels[pos_assigned_gt_inds] | |
label_weights = gt_bboxes.new_ones(num_denoising_queries) | |
# bbox targets | |
bbox_targets = torch.zeros(num_denoising_queries, 4, device=device) | |
bbox_weights = torch.zeros(num_denoising_queries, 4, device=device) | |
bbox_weights[pos_inds] = 1.0 | |
img_h, img_w = img_meta['img_shape'] | |
# DETR regress the relative position of boxes (cxcywh) in the image. | |
# Thus the learning target should be normalized by the image size, also | |
# the box format should be converted from defaultly x1y1x2y2 to cxcywh. | |
factor = gt_bboxes.new_tensor([img_w, img_h, img_w, | |
img_h]).unsqueeze(0) | |
gt_bboxes_normalized = gt_bboxes / factor | |
gt_bboxes_targets = bbox_xyxy_to_cxcywh(gt_bboxes_normalized) | |
bbox_targets[pos_inds] = gt_bboxes_targets.repeat([num_groups, 1]) | |
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, | |
neg_inds) | |
def split_outputs(all_layers_cls_scores: Tensor, | |
all_layers_bbox_preds: Tensor, | |
dn_meta: Dict[str, int]) -> Tuple[Tensor]: | |
"""Split outputs of the denoising part and the matching part. | |
For the total outputs of `num_queries_total` length, the former | |
`num_denoising_queries` outputs are from denoising queries, and | |
the rest `num_matching_queries` ones are from matching queries, | |
where `num_queries_total` is the sum of `num_denoising_queries` and | |
`num_matching_queries`. | |
Args: | |
all_layers_cls_scores (Tensor): Classification scores of all | |
decoder layers, has shape (num_decoder_layers, bs, | |
num_queries_total, cls_out_channels). | |
all_layers_bbox_preds (Tensor): Regression outputs of all decoder | |
layers. Each is a 4D-tensor with normalized coordinate format | |
(cx, cy, w, h) and has shape (num_decoder_layers, bs, | |
num_queries_total, 4). | |
dn_meta (Dict[str, int]): The dictionary saves information about | |
group collation, including 'num_denoising_queries' and | |
'num_denoising_groups'. | |
Returns: | |
Tuple[Tensor]: a tuple containing the following outputs. | |
- all_layers_matching_cls_scores (Tensor): Classification scores | |
of all decoder layers in matching part, has shape | |
(num_decoder_layers, bs, num_matching_queries, cls_out_channels). | |
- all_layers_matching_bbox_preds (Tensor): Regression outputs of | |
all decoder layers in matching part. Each is a 4D-tensor with | |
normalized coordinate format (cx, cy, w, h) and has shape | |
(num_decoder_layers, bs, num_matching_queries, 4). | |
- all_layers_denoising_cls_scores (Tensor): Classification scores | |
of all decoder layers in denoising part, has shape | |
(num_decoder_layers, bs, num_denoising_queries, | |
cls_out_channels). | |
- all_layers_denoising_bbox_preds (Tensor): Regression outputs of | |
all decoder layers in denoising part. Each is a 4D-tensor with | |
normalized coordinate format (cx, cy, w, h) and has shape | |
(num_decoder_layers, bs, num_denoising_queries, 4). | |
""" | |
num_denoising_queries = dn_meta['num_denoising_queries'] | |
if dn_meta is not None: | |
all_layers_denoising_cls_scores = \ | |
all_layers_cls_scores[:, :, : num_denoising_queries, :] | |
all_layers_denoising_bbox_preds = \ | |
all_layers_bbox_preds[:, :, : num_denoising_queries, :] | |
all_layers_matching_cls_scores = \ | |
all_layers_cls_scores[:, :, num_denoising_queries:, :] | |
all_layers_matching_bbox_preds = \ | |
all_layers_bbox_preds[:, :, num_denoising_queries:, :] | |
else: | |
all_layers_denoising_cls_scores = None | |
all_layers_denoising_bbox_preds = None | |
all_layers_matching_cls_scores = all_layers_cls_scores | |
all_layers_matching_bbox_preds = all_layers_bbox_preds | |
return (all_layers_matching_cls_scores, all_layers_matching_bbox_preds, | |
all_layers_denoising_cls_scores, | |
all_layers_denoising_bbox_preds) | |