ai-photo-gallery / mmcls /engine /hooks /class_num_check_hook.py
KyanChen's picture
init
f549064
raw
history blame
2.41 kB
# Copyright (c) OpenMMLab. All rights reserved
from mmengine.hooks import Hook
from mmengine.utils import is_seq_of
from mmcls.registry import HOOKS
@HOOKS.register_module()
class ClassNumCheckHook(Hook):
"""Class Number Check HOOK."""
def _check_head(self, runner, dataset):
"""Check whether the `num_classes` in head matches the length of
`CLASSES` in `dataset`.
Args:
runner (obj:`Runner`): runner object.
dataset (obj: `BaseDataset`): the dataset to check.
"""
model = runner.model
if dataset.CLASSES is None:
runner.logger.warning(
f'Please set class information in `metainfo` '
f'in the {dataset.__class__.__name__} and'
f'check if it is consistent with the `num_classes` '
f'of head')
else:
assert is_seq_of(dataset.CLASSES, str), \
(f'Class information in `metainfo` in '
f'{dataset.__class__.__name__} should be a tuple of str.')
for _, module in model.named_modules():
if hasattr(module, 'num_classes'):
assert module.num_classes == len(dataset.CLASSES), \
(f'The `num_classes` ({module.num_classes}) in '
f'{module.__class__.__name__} of '
f'{model.__class__.__name__} does not matches '
f'the length of class information in `metainfo` '
f'{len(dataset.CLASSES)}) in '
f'{dataset.__class__.__name__}')
def before_train(self, runner):
"""Check whether the training dataset is compatible with head.
Args:
runner (obj: `IterBasedRunner`): Iter based Runner.
"""
self._check_head(runner, runner.train_dataloader.dataset)
def before_val(self, runner):
"""Check whether the validation dataset is compatible with head.
Args:
runner (obj:`IterBasedRunner`): Iter based Runner.
"""
self._check_head(runner, runner.val_dataloader.dataset)
def before_test(self, runner):
"""Check whether the test dataset is compatible with head.
Args:
runner (obj:`IterBasedRunner`): Iter based Runner.
"""
self._check_head(runner, runner.test_dataloader.dataset)