ai-photo-gallery / configs /_base_ /datasets /openimages_detection.py
KyanChen's picture
init
f549064
raw
history blame
2.64 kB
# dataset settings
dataset_type = 'OpenImagesDataset'
data_root = 'data/OpenImages/'
# file_client_args = dict(
# backend='petrel',
# path_mapping=dict({
# './data/': 's3://openmmlab/datasets/detection/',
# 'data/': 's3://openmmlab/datasets/detection/'
# }))
file_client_args = dict(backend='disk')
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', scale=(1024, 800), keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='Resize', scale=(1024, 800), keep_ratio=True),
# avoid bboxes being resized
dict(type='LoadAnnotations', with_bbox=True),
# TODO: find a better way to collect image_level_labels
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'instances', 'image_level_labels'))
]
train_dataloader = dict(
batch_size=2,
num_workers=0, # workers_per_gpu > 0 may occur out of memory
persistent_workers=False,
sampler=dict(type='DefaultSampler', shuffle=True),
batch_sampler=dict(type='AspectRatioBatchSampler'),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/oidv6-train-annotations-bbox.csv',
data_prefix=dict(img='OpenImages/train/'),
label_file='annotations/class-descriptions-boxable.csv',
hierarchy_file='annotations/bbox_labels_600_hierarchy.json',
meta_file='annotations/train-image-metas.pkl',
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=1,
num_workers=0,
persistent_workers=False,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/validation-annotations-bbox.csv',
data_prefix=dict(img='OpenImages/validation/'),
label_file='annotations/class-descriptions-boxable.csv',
hierarchy_file='annotations/bbox_labels_600_hierarchy.json',
meta_file='annotations/validation-image-metas.pkl',
image_level_ann_file='annotations/validation-'
'annotations-human-imagelabels-boxable.csv',
pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(
type='OpenImagesMetric',
iou_thrs=0.5,
ioa_thrs=0.5,
use_group_of=True,
get_supercategory=True)
test_evaluator = val_evaluator