Spaces:
Runtime error
Runtime error
File size: 17,130 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Tuple, Union
import cv2
import mmcv
import numpy as np
import torch
from mmengine.dist import master_only
from mmengine.structures import InstanceData, PixelData
from mmengine.visualization import Visualizer
from ..evaluation import INSTANCE_OFFSET
from ..registry import VISUALIZERS
from ..structures import DetDataSample
from ..structures.mask import BitmapMasks, PolygonMasks, bitmap_to_polygon
from .palette import _get_adaptive_scales, get_palette, jitter_color
@VISUALIZERS.register_module()
class DetLocalVisualizer(Visualizer):
"""MMDetection Local Visualizer.
Args:
name (str): Name of the instance. Defaults to 'visualizer'.
image (np.ndarray, optional): the origin image to draw. The format
should be RGB. Defaults to None.
vis_backends (list, optional): Visual backend config list.
Defaults to None.
save_dir (str, optional): Save file dir for all storage backends.
If it is None, the backend storage will not save any data.
bbox_color (str, tuple(int), optional): Color of bbox lines.
The tuple of color should be in BGR order. Defaults to None.
text_color (str, tuple(int), optional): Color of texts.
The tuple of color should be in BGR order.
Defaults to (200, 200, 200).
mask_color (str, tuple(int), optional): Color of masks.
The tuple of color should be in BGR order.
Defaults to None.
line_width (int, float): The linewidth of lines.
Defaults to 3.
alpha (int, float): The transparency of bboxes or mask.
Defaults to 0.8.
Examples:
>>> import numpy as np
>>> import torch
>>> from mmengine.structures import InstanceData
>>> from mmdet.structures import DetDataSample
>>> from mmdet.visualization import DetLocalVisualizer
>>> det_local_visualizer = DetLocalVisualizer()
>>> image = np.random.randint(0, 256,
... size=(10, 12, 3)).astype('uint8')
>>> gt_instances = InstanceData()
>>> gt_instances.bboxes = torch.Tensor([[1, 2, 2, 5]])
>>> gt_instances.labels = torch.randint(0, 2, (1,))
>>> gt_det_data_sample = DetDataSample()
>>> gt_det_data_sample.gt_instances = gt_instances
>>> det_local_visualizer.add_datasample('image', image,
... gt_det_data_sample)
>>> det_local_visualizer.add_datasample(
... 'image', image, gt_det_data_sample,
... out_file='out_file.jpg')
>>> det_local_visualizer.add_datasample(
... 'image', image, gt_det_data_sample,
... show=True)
>>> pred_instances = InstanceData()
>>> pred_instances.bboxes = torch.Tensor([[2, 4, 4, 8]])
>>> pred_instances.labels = torch.randint(0, 2, (1,))
>>> pred_det_data_sample = DetDataSample()
>>> pred_det_data_sample.pred_instances = pred_instances
>>> det_local_visualizer.add_datasample('image', image,
... gt_det_data_sample,
... pred_det_data_sample)
"""
def __init__(self,
name: str = 'visualizer',
image: Optional[np.ndarray] = None,
vis_backends: Optional[Dict] = None,
save_dir: Optional[str] = None,
bbox_color: Optional[Union[str, Tuple[int]]] = None,
text_color: Optional[Union[str,
Tuple[int]]] = (200, 200, 200),
mask_color: Optional[Union[str, Tuple[int]]] = None,
line_width: Union[int, float] = 3,
alpha: float = 0.8) -> None:
super().__init__(
name=name,
image=image,
vis_backends=vis_backends,
save_dir=save_dir)
self.bbox_color = bbox_color
self.text_color = text_color
self.mask_color = mask_color
self.line_width = line_width
self.alpha = alpha
# Set default value. When calling
# `DetLocalVisualizer().dataset_meta=xxx`,
# it will override the default value.
self.dataset_meta = {}
def _draw_instances(self, image: np.ndarray, instances: ['InstanceData'],
classes: Optional[List[str]],
palette: Optional[List[tuple]]) -> np.ndarray:
"""Draw instances of GT or prediction.
Args:
image (np.ndarray): The image to draw.
instances (:obj:`InstanceData`): Data structure for
instance-level annotations or predictions.
classes (List[str], optional): Category information.
palette (List[tuple], optional): Palette information
corresponding to the category.
Returns:
np.ndarray: the drawn image which channel is RGB.
"""
self.set_image(image)
if 'bboxes' in instances:
bboxes = instances.bboxes
labels = instances.labels
max_label = int(max(labels) if len(labels) > 0 else 0)
text_palette = get_palette(self.text_color, max_label + 1)
text_colors = [text_palette[label] for label in labels]
bbox_color = palette if self.bbox_color is None \
else self.bbox_color
bbox_palette = get_palette(bbox_color, max_label + 1)
colors = [bbox_palette[label] for label in labels]
self.draw_bboxes(
bboxes,
edge_colors=colors,
alpha=self.alpha,
line_widths=self.line_width)
positions = bboxes[:, :2] + self.line_width
areas = (bboxes[:, 3] - bboxes[:, 1]) * (
bboxes[:, 2] - bboxes[:, 0])
scales = _get_adaptive_scales(areas)
for i, (pos, label) in enumerate(zip(positions, labels)):
label_text = classes[
label] if classes is not None else f'class {label}'
if 'scores' in instances:
score = round(float(instances.scores[i]) * 100, 1)
label_text += f': {score}'
self.draw_texts(
label_text,
pos,
colors=text_colors[i],
font_sizes=int(13 * scales[i]),
bboxes=[{
'facecolor': 'black',
'alpha': 0.8,
'pad': 0.7,
'edgecolor': 'none'
}])
if 'masks' in instances:
labels = instances.labels
masks = instances.masks
if isinstance(masks, torch.Tensor):
masks = masks.numpy()
elif isinstance(masks, (PolygonMasks, BitmapMasks)):
masks = masks.to_ndarray()
masks = masks.astype(bool)
max_label = int(max(labels) if len(labels) > 0 else 0)
mask_color = palette if self.mask_color is None \
else self.mask_color
mask_palette = get_palette(mask_color, max_label + 1)
colors = [jitter_color(mask_palette[label]) for label in labels]
text_palette = get_palette(self.text_color, max_label + 1)
text_colors = [text_palette[label] for label in labels]
polygons = []
for i, mask in enumerate(masks):
contours, _ = bitmap_to_polygon(mask)
polygons.extend(contours)
self.draw_polygons(polygons, edge_colors='w', alpha=self.alpha)
self.draw_binary_masks(masks, colors=colors, alphas=self.alpha)
if len(labels) > 0 and \
('bboxes' not in instances or
instances.bboxes.sum() == 0):
# instances.bboxes.sum()==0 represent dummy bboxes.
# A typical example of SOLO does not exist bbox branch.
areas = []
positions = []
for mask in masks:
_, _, stats, centroids = cv2.connectedComponentsWithStats(
mask.astype(np.uint8), connectivity=8)
if stats.shape[0] > 1:
largest_id = np.argmax(stats[1:, -1]) + 1
positions.append(centroids[largest_id])
areas.append(stats[largest_id, -1])
areas = np.stack(areas, axis=0)
scales = _get_adaptive_scales(areas)
for i, (pos, label) in enumerate(zip(positions, labels)):
label_text = classes[
label] if classes is not None else f'class {label}'
if 'scores' in instances:
score = round(float(instances.scores[i]) * 100, 1)
label_text += f': {score}'
self.draw_texts(
label_text,
pos,
colors=text_colors[i],
font_sizes=int(13 * scales[i]),
horizontal_alignments='center',
bboxes=[{
'facecolor': 'black',
'alpha': 0.8,
'pad': 0.7,
'edgecolor': 'none'
}])
return self.get_image()
def _draw_panoptic_seg(self, image: np.ndarray,
panoptic_seg: ['PixelData'],
classes: Optional[List[str]]) -> np.ndarray:
"""Draw panoptic seg of GT or prediction.
Args:
image (np.ndarray): The image to draw.
panoptic_seg (:obj:`PixelData`): Data structure for
pixel-level annotations or predictions.
classes (List[str], optional): Category information.
Returns:
np.ndarray: the drawn image which channel is RGB.
"""
# TODO: Is there a way to bypass?
num_classes = len(classes)
panoptic_seg = panoptic_seg.sem_seg[0]
ids = np.unique(panoptic_seg)[::-1]
legal_indices = ids != num_classes # for VOID label
ids = ids[legal_indices]
labels = np.array([id % INSTANCE_OFFSET for id in ids], dtype=np.int64)
segms = (panoptic_seg[None] == ids[:, None, None])
max_label = int(max(labels) if len(labels) > 0 else 0)
mask_palette = get_palette(self.mask_color, max_label + 1)
colors = [mask_palette[label] for label in labels]
self.set_image(image)
# draw segm
polygons = []
for i, mask in enumerate(segms):
contours, _ = bitmap_to_polygon(mask)
polygons.extend(contours)
self.draw_polygons(polygons, edge_colors='w', alpha=self.alpha)
self.draw_binary_masks(segms, colors=colors, alphas=self.alpha)
# draw label
areas = []
positions = []
for mask in segms:
_, _, stats, centroids = cv2.connectedComponentsWithStats(
mask.astype(np.uint8), connectivity=8)
max_id = np.argmax(stats[1:, -1]) + 1
positions.append(centroids[max_id])
areas.append(stats[max_id, -1])
areas = np.stack(areas, axis=0)
scales = _get_adaptive_scales(areas)
text_palette = get_palette(self.text_color, max_label + 1)
text_colors = [text_palette[label] for label in labels]
for i, (pos, label) in enumerate(zip(positions, labels)):
label_text = classes[label]
self.draw_texts(
label_text,
pos,
colors=text_colors[i],
font_sizes=int(13 * scales[i]),
bboxes=[{
'facecolor': 'black',
'alpha': 0.8,
'pad': 0.7,
'edgecolor': 'none'
}],
horizontal_alignments='center')
return self.get_image()
@master_only
def add_datasample(
self,
name: str,
image: np.ndarray,
data_sample: Optional['DetDataSample'] = None,
draw_gt: bool = True,
draw_pred: bool = True,
show: bool = False,
wait_time: float = 0,
# TODO: Supported in mmengine's Viusalizer.
out_file: Optional[str] = None,
pred_score_thr: float = 0.3,
step: int = 0) -> None:
"""Draw datasample and save to all backends.
- If GT and prediction are plotted at the same time, they are
displayed in a stitched image where the left image is the
ground truth and the right image is the prediction.
- If ``show`` is True, all storage backends are ignored, and
the images will be displayed in a local window.
- If ``out_file`` is specified, the drawn image will be
saved to ``out_file``. t is usually used when the display
is not available.
Args:
name (str): The image identifier.
image (np.ndarray): The image to draw.
data_sample (:obj:`DetDataSample`, optional): A data
sample that contain annotations and predictions.
Defaults to None.
draw_gt (bool): Whether to draw GT DetDataSample. Default to True.
draw_pred (bool): Whether to draw Prediction DetDataSample.
Defaults to True.
show (bool): Whether to display the drawn image. Default to False.
wait_time (float): The interval of show (s). Defaults to 0.
out_file (str): Path to output file. Defaults to None.
pred_score_thr (float): The threshold to visualize the bboxes
and masks. Defaults to 0.3.
step (int): Global step value to record. Defaults to 0.
"""
image = image.clip(0, 255).astype(np.uint8)
classes = self.dataset_meta.get('classes', None)
palette = self.dataset_meta.get('palette', None)
gt_img_data = None
pred_img_data = None
if data_sample is not None:
data_sample = data_sample.cpu()
if draw_gt and data_sample is not None:
gt_img_data = image
if 'gt_instances' in data_sample:
gt_img_data = self._draw_instances(image,
data_sample.gt_instances,
classes, palette)
if 'gt_panoptic_seg' in data_sample:
assert classes is not None, 'class information is ' \
'not provided when ' \
'visualizing panoptic ' \
'segmentation results.'
gt_img_data = self._draw_panoptic_seg(
gt_img_data, data_sample.gt_panoptic_seg, classes)
if draw_pred and data_sample is not None:
pred_img_data = image
if 'pred_instances' in data_sample:
pred_instances = data_sample.pred_instances
pred_instances = pred_instances[
pred_instances.scores > pred_score_thr]
pred_img_data = self._draw_instances(image, pred_instances,
classes, palette)
if 'pred_panoptic_seg' in data_sample:
assert classes is not None, 'class information is ' \
'not provided when ' \
'visualizing panoptic ' \
'segmentation results.'
pred_img_data = self._draw_panoptic_seg(
pred_img_data, data_sample.pred_panoptic_seg.numpy(),
classes)
if gt_img_data is not None and pred_img_data is not None:
drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1)
elif gt_img_data is not None:
drawn_img = gt_img_data
elif pred_img_data is not None:
drawn_img = pred_img_data
else:
# Display the original image directly if nothing is drawn.
drawn_img = image
# It is convenient for users to obtain the drawn image.
# For example, the user wants to obtain the drawn image and
# save it as a video during video inference.
self.set_image(drawn_img)
if show:
self.show(drawn_img, win_name=name, wait_time=wait_time)
if out_file is not None:
mmcv.imwrite(drawn_img[..., ::-1], out_file)
else:
self.add_image(name, drawn_img, step)
|