File size: 11,559 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Union

import torch
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.registry import TASK_UTILS
from .assign_result import AssignResult
from .base_assigner import BaseAssigner


@TASK_UTILS.register_module()
class MaxIoUAssigner(BaseAssigner):
    """Assign a corresponding gt bbox or background to each bbox.

    Each proposals will be assigned with `-1`, or a semi-positive integer
    indicating the ground truth index.

    - -1: negative sample, no assigned gt
    - semi-positive integer: positive sample, index (0-based) of assigned gt

    Args:
        pos_iou_thr (float): IoU threshold for positive bboxes.
        neg_iou_thr (float or tuple): IoU threshold for negative bboxes.
        min_pos_iou (float): Minimum iou for a bbox to be considered as a
            positive bbox. Positive samples can have smaller IoU than
            pos_iou_thr due to the 4th step (assign max IoU sample to each gt).
            `min_pos_iou` is set to avoid assigning bboxes that have extremely
            small iou with GT as positive samples. It brings about 0.3 mAP
            improvements in 1x schedule but does not affect the performance of
            3x schedule. More comparisons can be found in
            `PR #7464 <https://github.com/open-mmlab/mmdetection/pull/7464>`_.
        gt_max_assign_all (bool): Whether to assign all bboxes with the same
            highest overlap with some gt to that gt.
        ignore_iof_thr (float): IoF threshold for ignoring bboxes (if
            `gt_bboxes_ignore` is specified). Negative values mean not
            ignoring any bboxes.
        ignore_wrt_candidates (bool): Whether to compute the iof between
            `bboxes` and `gt_bboxes_ignore`, or the contrary.
        match_low_quality (bool): Whether to allow low quality matches. This is
            usually allowed for RPN and single stage detectors, but not allowed
            in the second stage. Details are demonstrated in Step 4.
        gpu_assign_thr (int): The upper bound of the number of GT for GPU
            assign. When the number of gt is above this threshold, will assign
            on CPU device. Negative values mean not assign on CPU.
        iou_calculator (dict): Config of overlaps Calculator.
    """

    def __init__(self,
                 pos_iou_thr: float,
                 neg_iou_thr: Union[float, tuple],
                 min_pos_iou: float = .0,
                 gt_max_assign_all: bool = True,
                 ignore_iof_thr: float = -1,
                 ignore_wrt_candidates: bool = True,
                 match_low_quality: bool = True,
                 gpu_assign_thr: float = -1,
                 iou_calculator: dict = dict(type='BboxOverlaps2D')):
        self.pos_iou_thr = pos_iou_thr
        self.neg_iou_thr = neg_iou_thr
        self.min_pos_iou = min_pos_iou
        self.gt_max_assign_all = gt_max_assign_all
        self.ignore_iof_thr = ignore_iof_thr
        self.ignore_wrt_candidates = ignore_wrt_candidates
        self.gpu_assign_thr = gpu_assign_thr
        self.match_low_quality = match_low_quality
        self.iou_calculator = TASK_UTILS.build(iou_calculator)

    def assign(self,
               pred_instances: InstanceData,
               gt_instances: InstanceData,
               gt_instances_ignore: Optional[InstanceData] = None,
               **kwargs) -> AssignResult:
        """Assign gt to bboxes.

        This method assign a gt bbox to every bbox (proposal/anchor), each bbox
        will be assigned with -1, or a semi-positive number. -1 means negative
        sample, semi-positive number is the index (0-based) of assigned gt.
        The assignment is done in following steps, the order matters.

        1. assign every bbox to the background
        2. assign proposals whose iou with all gts < neg_iou_thr to 0
        3. for each bbox, if the iou with its nearest gt >= pos_iou_thr,
           assign it to that bbox
        4. for each gt bbox, assign its nearest proposals (may be more than
           one) to itself

        Args:
            pred_instances (:obj:`InstanceData`): Instances of model
                predictions. It includes ``priors``, and the priors can
                be anchors or points, or the bboxes predicted by the
                previous stage, has shape (n, 4). The bboxes predicted by
                the current model or stage will be named ``bboxes``,
                ``labels``, and ``scores``, the same as the ``InstanceData``
                in other places.
            gt_instances (:obj:`InstanceData`): Ground truth of instance
                annotations. It usually includes ``bboxes``, with shape (k, 4),
                and ``labels``, with shape (k, ).
            gt_instances_ignore (:obj:`InstanceData`, optional): Instances
                to be ignored during training. It includes ``bboxes``
                attribute data that is ignored during training and testing.
                Defaults to None.

        Returns:
            :obj:`AssignResult`: The assign result.

        Example:
            >>> from mmengine.structures import InstanceData
            >>> self = MaxIoUAssigner(0.5, 0.5)
            >>> pred_instances = InstanceData()
            >>> pred_instances.priors = torch.Tensor([[0, 0, 10, 10],
            ...                                      [10, 10, 20, 20]])
            >>> gt_instances = InstanceData()
            >>> gt_instances.bboxes = torch.Tensor([[0, 0, 10, 9]])
            >>> gt_instances.labels = torch.Tensor([0])
            >>> assign_result = self.assign(pred_instances, gt_instances)
            >>> expected_gt_inds = torch.LongTensor([1, 0])
            >>> assert torch.all(assign_result.gt_inds == expected_gt_inds)
        """
        gt_bboxes = gt_instances.bboxes
        priors = pred_instances.priors
        gt_labels = gt_instances.labels
        if gt_instances_ignore is not None:
            gt_bboxes_ignore = gt_instances_ignore.bboxes
        else:
            gt_bboxes_ignore = None

        assign_on_cpu = True if (self.gpu_assign_thr > 0) and (
            gt_bboxes.shape[0] > self.gpu_assign_thr) else False
        # compute overlap and assign gt on CPU when number of GT is large
        if assign_on_cpu:
            device = priors.device
            priors = priors.cpu()
            gt_bboxes = gt_bboxes.cpu()
            gt_labels = gt_labels.cpu()
            if gt_bboxes_ignore is not None:
                gt_bboxes_ignore = gt_bboxes_ignore.cpu()

        overlaps = self.iou_calculator(gt_bboxes, priors)

        if (self.ignore_iof_thr > 0 and gt_bboxes_ignore is not None
                and gt_bboxes_ignore.numel() > 0 and priors.numel() > 0):
            if self.ignore_wrt_candidates:
                ignore_overlaps = self.iou_calculator(
                    priors, gt_bboxes_ignore, mode='iof')
                ignore_max_overlaps, _ = ignore_overlaps.max(dim=1)
            else:
                ignore_overlaps = self.iou_calculator(
                    gt_bboxes_ignore, priors, mode='iof')
                ignore_max_overlaps, _ = ignore_overlaps.max(dim=0)
            overlaps[:, ignore_max_overlaps > self.ignore_iof_thr] = -1

        assign_result = self.assign_wrt_overlaps(overlaps, gt_labels)
        if assign_on_cpu:
            assign_result.gt_inds = assign_result.gt_inds.to(device)
            assign_result.max_overlaps = assign_result.max_overlaps.to(device)
            if assign_result.labels is not None:
                assign_result.labels = assign_result.labels.to(device)
        return assign_result

    def assign_wrt_overlaps(self, overlaps: Tensor,
                            gt_labels: Tensor) -> AssignResult:
        """Assign w.r.t. the overlaps of priors with gts.

        Args:
            overlaps (Tensor): Overlaps between k gt_bboxes and n bboxes,
                shape(k, n).
            gt_labels (Tensor): Labels of k gt_bboxes, shape (k, ).

        Returns:
            :obj:`AssignResult`: The assign result.
        """
        num_gts, num_bboxes = overlaps.size(0), overlaps.size(1)

        # 1. assign -1 by default
        assigned_gt_inds = overlaps.new_full((num_bboxes, ),
                                             -1,
                                             dtype=torch.long)

        if num_gts == 0 or num_bboxes == 0:
            # No ground truth or boxes, return empty assignment
            max_overlaps = overlaps.new_zeros((num_bboxes, ))
            assigned_labels = overlaps.new_full((num_bboxes, ),
                                                -1,
                                                dtype=torch.long)
            if num_gts == 0:
                # No truth, assign everything to background
                assigned_gt_inds[:] = 0
            return AssignResult(
                num_gts=num_gts,
                gt_inds=assigned_gt_inds,
                max_overlaps=max_overlaps,
                labels=assigned_labels)

        # for each anchor, which gt best overlaps with it
        # for each anchor, the max iou of all gts
        max_overlaps, argmax_overlaps = overlaps.max(dim=0)
        # for each gt, which anchor best overlaps with it
        # for each gt, the max iou of all proposals
        gt_max_overlaps, gt_argmax_overlaps = overlaps.max(dim=1)

        # 2. assign negative: below
        # the negative inds are set to be 0
        if isinstance(self.neg_iou_thr, float):
            assigned_gt_inds[(max_overlaps >= 0)
                             & (max_overlaps < self.neg_iou_thr)] = 0
        elif isinstance(self.neg_iou_thr, tuple):
            assert len(self.neg_iou_thr) == 2
            assigned_gt_inds[(max_overlaps >= self.neg_iou_thr[0])
                             & (max_overlaps < self.neg_iou_thr[1])] = 0

        # 3. assign positive: above positive IoU threshold
        pos_inds = max_overlaps >= self.pos_iou_thr
        assigned_gt_inds[pos_inds] = argmax_overlaps[pos_inds] + 1

        if self.match_low_quality:
            # Low-quality matching will overwrite the assigned_gt_inds assigned
            # in Step 3. Thus, the assigned gt might not be the best one for
            # prediction.
            # For example, if bbox A has 0.9 and 0.8 iou with GT bbox 1 & 2,
            # bbox 1 will be assigned as the best target for bbox A in step 3.
            # However, if GT bbox 2's gt_argmax_overlaps = A, bbox A's
            # assigned_gt_inds will be overwritten to be bbox 2.
            # This might be the reason that it is not used in ROI Heads.
            for i in range(num_gts):
                if gt_max_overlaps[i] >= self.min_pos_iou:
                    if self.gt_max_assign_all:
                        max_iou_inds = overlaps[i, :] == gt_max_overlaps[i]
                        assigned_gt_inds[max_iou_inds] = i + 1
                    else:
                        assigned_gt_inds[gt_argmax_overlaps[i]] = i + 1

        assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1)
        pos_inds = torch.nonzero(
            assigned_gt_inds > 0, as_tuple=False).squeeze()
        if pos_inds.numel() > 0:
            assigned_labels[pos_inds] = gt_labels[assigned_gt_inds[pos_inds] -
                                                  1]

        return AssignResult(
            num_gts=num_gts,
            gt_inds=assigned_gt_inds,
            max_overlaps=max_overlaps,
            labels=assigned_labels)