File size: 30,500 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Sequence, Tuple

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine.config import ConfigDict
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.models.layers import multiclass_nms
from mmdet.models.losses import accuracy
from mmdet.models.task_modules import SamplingResult
from mmdet.models.utils import multi_apply
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.utils import ConfigType, InstanceList, OptConfigType, OptMultiConfig
from .bbox_head import BBoxHead


@MODELS.register_module()
class SABLHead(BBoxHead):
    """Side-Aware Boundary Localization (SABL) for RoI-Head.

    Side-Aware features are extracted by conv layers
    with an attention mechanism.
    Boundary Localization with Bucketing and Bucketing Guided Rescoring
    are implemented in BucketingBBoxCoder.

    Please refer to https://arxiv.org/abs/1912.04260 for more details.

    Args:
        cls_in_channels (int): Input channels of cls RoI feature. \
            Defaults to 256.
        reg_in_channels (int): Input channels of reg RoI feature. \
            Defaults to 256.
        roi_feat_size (int): Size of RoI features. Defaults to 7.
        reg_feat_up_ratio (int): Upsample ratio of reg features. \
            Defaults to 2.
        reg_pre_kernel (int): Kernel of 2D conv layers before \
            attention pooling. Defaults to 3.
        reg_post_kernel (int): Kernel of 1D conv layers after \
            attention pooling. Defaults to 3.
        reg_pre_num (int): Number of pre convs. Defaults to 2.
        reg_post_num (int): Number of post convs. Defaults to 1.
        num_classes (int): Number of classes in dataset. Defaults to 80.
        cls_out_channels (int): Hidden channels in cls fcs. Defaults to 1024.
        reg_offset_out_channels (int): Hidden and output channel \
            of reg offset branch. Defaults to 256.
        reg_cls_out_channels (int): Hidden and output channel \
            of reg cls branch. Defaults to 256.
        num_cls_fcs (int): Number of fcs for cls branch. Defaults to 1.
        num_reg_fcs (int): Number of fcs for reg branch.. Defaults to 0.
        reg_class_agnostic (bool): Class agnostic regression or not. \
            Defaults to True.
        norm_cfg (dict): Config of norm layers. Defaults to None.
        bbox_coder (dict): Config of bbox coder. Defaults 'BucketingBBoxCoder'.
        loss_cls (dict): Config of classification loss.
        loss_bbox_cls (dict): Config of classification loss for bbox branch.
        loss_bbox_reg (dict): Config of regression loss for bbox branch.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 num_classes: int,
                 cls_in_channels: int = 256,
                 reg_in_channels: int = 256,
                 roi_feat_size: int = 7,
                 reg_feat_up_ratio: int = 2,
                 reg_pre_kernel: int = 3,
                 reg_post_kernel: int = 3,
                 reg_pre_num: int = 2,
                 reg_post_num: int = 1,
                 cls_out_channels: int = 1024,
                 reg_offset_out_channels: int = 256,
                 reg_cls_out_channels: int = 256,
                 num_cls_fcs: int = 1,
                 num_reg_fcs: int = 0,
                 reg_class_agnostic: bool = True,
                 norm_cfg: OptConfigType = None,
                 bbox_coder: ConfigType = dict(
                     type='BucketingBBoxCoder',
                     num_buckets=14,
                     scale_factor=1.7),
                 loss_cls: ConfigType = dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=False,
                     loss_weight=1.0),
                 loss_bbox_cls: ConfigType = dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
                 loss_bbox_reg: ConfigType = dict(
                     type='SmoothL1Loss', beta=0.1, loss_weight=1.0),
                 init_cfg: OptMultiConfig = None) -> None:
        super(BBoxHead, self).__init__(init_cfg=init_cfg)
        self.cls_in_channels = cls_in_channels
        self.reg_in_channels = reg_in_channels
        self.roi_feat_size = roi_feat_size
        self.reg_feat_up_ratio = int(reg_feat_up_ratio)
        self.num_buckets = bbox_coder['num_buckets']
        assert self.reg_feat_up_ratio // 2 >= 1
        self.up_reg_feat_size = roi_feat_size * self.reg_feat_up_ratio
        assert self.up_reg_feat_size == bbox_coder['num_buckets']
        self.reg_pre_kernel = reg_pre_kernel
        self.reg_post_kernel = reg_post_kernel
        self.reg_pre_num = reg_pre_num
        self.reg_post_num = reg_post_num
        self.num_classes = num_classes
        self.cls_out_channels = cls_out_channels
        self.reg_offset_out_channels = reg_offset_out_channels
        self.reg_cls_out_channels = reg_cls_out_channels
        self.num_cls_fcs = num_cls_fcs
        self.num_reg_fcs = num_reg_fcs
        self.reg_class_agnostic = reg_class_agnostic
        assert self.reg_class_agnostic
        self.norm_cfg = norm_cfg

        self.bbox_coder = TASK_UTILS.build(bbox_coder)
        self.loss_cls = MODELS.build(loss_cls)
        self.loss_bbox_cls = MODELS.build(loss_bbox_cls)
        self.loss_bbox_reg = MODELS.build(loss_bbox_reg)

        self.cls_fcs = self._add_fc_branch(self.num_cls_fcs,
                                           self.cls_in_channels,
                                           self.roi_feat_size,
                                           self.cls_out_channels)

        self.side_num = int(np.ceil(self.num_buckets / 2))

        if self.reg_feat_up_ratio > 1:
            self.upsample_x = nn.ConvTranspose1d(
                reg_in_channels,
                reg_in_channels,
                self.reg_feat_up_ratio,
                stride=self.reg_feat_up_ratio)
            self.upsample_y = nn.ConvTranspose1d(
                reg_in_channels,
                reg_in_channels,
                self.reg_feat_up_ratio,
                stride=self.reg_feat_up_ratio)

        self.reg_pre_convs = nn.ModuleList()
        for i in range(self.reg_pre_num):
            reg_pre_conv = ConvModule(
                reg_in_channels,
                reg_in_channels,
                kernel_size=reg_pre_kernel,
                padding=reg_pre_kernel // 2,
                norm_cfg=norm_cfg,
                act_cfg=dict(type='ReLU'))
            self.reg_pre_convs.append(reg_pre_conv)

        self.reg_post_conv_xs = nn.ModuleList()
        for i in range(self.reg_post_num):
            reg_post_conv_x = ConvModule(
                reg_in_channels,
                reg_in_channels,
                kernel_size=(1, reg_post_kernel),
                padding=(0, reg_post_kernel // 2),
                norm_cfg=norm_cfg,
                act_cfg=dict(type='ReLU'))
            self.reg_post_conv_xs.append(reg_post_conv_x)
        self.reg_post_conv_ys = nn.ModuleList()
        for i in range(self.reg_post_num):
            reg_post_conv_y = ConvModule(
                reg_in_channels,
                reg_in_channels,
                kernel_size=(reg_post_kernel, 1),
                padding=(reg_post_kernel // 2, 0),
                norm_cfg=norm_cfg,
                act_cfg=dict(type='ReLU'))
            self.reg_post_conv_ys.append(reg_post_conv_y)

        self.reg_conv_att_x = nn.Conv2d(reg_in_channels, 1, 1)
        self.reg_conv_att_y = nn.Conv2d(reg_in_channels, 1, 1)

        self.fc_cls = nn.Linear(self.cls_out_channels, self.num_classes + 1)
        self.relu = nn.ReLU(inplace=True)

        self.reg_cls_fcs = self._add_fc_branch(self.num_reg_fcs,
                                               self.reg_in_channels, 1,
                                               self.reg_cls_out_channels)
        self.reg_offset_fcs = self._add_fc_branch(self.num_reg_fcs,
                                                  self.reg_in_channels, 1,
                                                  self.reg_offset_out_channels)
        self.fc_reg_cls = nn.Linear(self.reg_cls_out_channels, 1)
        self.fc_reg_offset = nn.Linear(self.reg_offset_out_channels, 1)

        if init_cfg is None:
            self.init_cfg = [
                dict(
                    type='Xavier',
                    layer='Linear',
                    distribution='uniform',
                    override=[
                        dict(type='Normal', name='reg_conv_att_x', std=0.01),
                        dict(type='Normal', name='reg_conv_att_y', std=0.01),
                        dict(type='Normal', name='fc_reg_cls', std=0.01),
                        dict(type='Normal', name='fc_cls', std=0.01),
                        dict(type='Normal', name='fc_reg_offset', std=0.001)
                    ])
            ]
            if self.reg_feat_up_ratio > 1:
                self.init_cfg += [
                    dict(
                        type='Kaiming',
                        distribution='normal',
                        override=[
                            dict(name='upsample_x'),
                            dict(name='upsample_y')
                        ])
                ]

    def _add_fc_branch(self, num_branch_fcs: int, in_channels: int,
                       roi_feat_size: int,
                       fc_out_channels: int) -> nn.ModuleList:
        """build fc layers."""
        in_channels = in_channels * roi_feat_size * roi_feat_size
        branch_fcs = nn.ModuleList()
        for i in range(num_branch_fcs):
            fc_in_channels = (in_channels if i == 0 else fc_out_channels)
            branch_fcs.append(nn.Linear(fc_in_channels, fc_out_channels))
        return branch_fcs

    def cls_forward(self, cls_x: Tensor) -> Tensor:
        """forward of classification fc layers."""
        cls_x = cls_x.view(cls_x.size(0), -1)
        for fc in self.cls_fcs:
            cls_x = self.relu(fc(cls_x))
        cls_score = self.fc_cls(cls_x)
        return cls_score

    def attention_pool(self, reg_x: Tensor) -> tuple:
        """Extract direction-specific features fx and fy with attention
        methanism."""
        reg_fx = reg_x
        reg_fy = reg_x
        reg_fx_att = self.reg_conv_att_x(reg_fx).sigmoid()
        reg_fy_att = self.reg_conv_att_y(reg_fy).sigmoid()
        reg_fx_att = reg_fx_att / reg_fx_att.sum(dim=2).unsqueeze(2)
        reg_fy_att = reg_fy_att / reg_fy_att.sum(dim=3).unsqueeze(3)
        reg_fx = (reg_fx * reg_fx_att).sum(dim=2)
        reg_fy = (reg_fy * reg_fy_att).sum(dim=3)
        return reg_fx, reg_fy

    def side_aware_feature_extractor(self, reg_x: Tensor) -> tuple:
        """Refine and extract side-aware features without split them."""
        for reg_pre_conv in self.reg_pre_convs:
            reg_x = reg_pre_conv(reg_x)
        reg_fx, reg_fy = self.attention_pool(reg_x)

        if self.reg_post_num > 0:
            reg_fx = reg_fx.unsqueeze(2)
            reg_fy = reg_fy.unsqueeze(3)
            for i in range(self.reg_post_num):
                reg_fx = self.reg_post_conv_xs[i](reg_fx)
                reg_fy = self.reg_post_conv_ys[i](reg_fy)
            reg_fx = reg_fx.squeeze(2)
            reg_fy = reg_fy.squeeze(3)
        if self.reg_feat_up_ratio > 1:
            reg_fx = self.relu(self.upsample_x(reg_fx))
            reg_fy = self.relu(self.upsample_y(reg_fy))
        reg_fx = torch.transpose(reg_fx, 1, 2)
        reg_fy = torch.transpose(reg_fy, 1, 2)
        return reg_fx.contiguous(), reg_fy.contiguous()

    def reg_pred(self, x: Tensor, offset_fcs: nn.ModuleList,
                 cls_fcs: nn.ModuleList) -> tuple:
        """Predict bucketing estimation (cls_pred) and fine regression (offset
        pred) with side-aware features."""
        x_offset = x.view(-1, self.reg_in_channels)
        x_cls = x.view(-1, self.reg_in_channels)

        for fc in offset_fcs:
            x_offset = self.relu(fc(x_offset))
        for fc in cls_fcs:
            x_cls = self.relu(fc(x_cls))
        offset_pred = self.fc_reg_offset(x_offset)
        cls_pred = self.fc_reg_cls(x_cls)

        offset_pred = offset_pred.view(x.size(0), -1)
        cls_pred = cls_pred.view(x.size(0), -1)

        return offset_pred, cls_pred

    def side_aware_split(self, feat: Tensor) -> Tensor:
        """Split side-aware features aligned with orders of bucketing
        targets."""
        l_end = int(np.ceil(self.up_reg_feat_size / 2))
        r_start = int(np.floor(self.up_reg_feat_size / 2))
        feat_fl = feat[:, :l_end]
        feat_fr = feat[:, r_start:].flip(dims=(1, ))
        feat_fl = feat_fl.contiguous()
        feat_fr = feat_fr.contiguous()
        feat = torch.cat([feat_fl, feat_fr], dim=-1)
        return feat

    def bbox_pred_split(self, bbox_pred: tuple,
                        num_proposals_per_img: Sequence[int]) -> tuple:
        """Split batch bbox prediction back to each image."""
        bucket_cls_preds, bucket_offset_preds = bbox_pred
        bucket_cls_preds = bucket_cls_preds.split(num_proposals_per_img, 0)
        bucket_offset_preds = bucket_offset_preds.split(
            num_proposals_per_img, 0)
        bbox_pred = tuple(zip(bucket_cls_preds, bucket_offset_preds))
        return bbox_pred

    def reg_forward(self, reg_x: Tensor) -> tuple:
        """forward of regression branch."""
        outs = self.side_aware_feature_extractor(reg_x)
        edge_offset_preds = []
        edge_cls_preds = []
        reg_fx = outs[0]
        reg_fy = outs[1]
        offset_pred_x, cls_pred_x = self.reg_pred(reg_fx, self.reg_offset_fcs,
                                                  self.reg_cls_fcs)
        offset_pred_y, cls_pred_y = self.reg_pred(reg_fy, self.reg_offset_fcs,
                                                  self.reg_cls_fcs)
        offset_pred_x = self.side_aware_split(offset_pred_x)
        offset_pred_y = self.side_aware_split(offset_pred_y)
        cls_pred_x = self.side_aware_split(cls_pred_x)
        cls_pred_y = self.side_aware_split(cls_pred_y)
        edge_offset_preds = torch.cat([offset_pred_x, offset_pred_y], dim=-1)
        edge_cls_preds = torch.cat([cls_pred_x, cls_pred_y], dim=-1)

        return edge_cls_preds, edge_offset_preds

    def forward(self, x: Tensor) -> tuple:
        """Forward features from the upstream network."""
        bbox_pred = self.reg_forward(x)
        cls_score = self.cls_forward(x)

        return cls_score, bbox_pred

    def get_targets(self,
                    sampling_results: List[SamplingResult],
                    rcnn_train_cfg: ConfigDict,
                    concat: bool = True) -> tuple:
        """Calculate the ground truth for all samples in a batch according to
        the sampling_results."""
        pos_proposals = [res.pos_bboxes for res in sampling_results]
        neg_proposals = [res.neg_bboxes for res in sampling_results]
        pos_gt_bboxes = [res.pos_gt_bboxes for res in sampling_results]
        pos_gt_labels = [res.pos_gt_labels for res in sampling_results]
        cls_reg_targets = self.bucket_target(
            pos_proposals,
            neg_proposals,
            pos_gt_bboxes,
            pos_gt_labels,
            rcnn_train_cfg,
            concat=concat)
        (labels, label_weights, bucket_cls_targets, bucket_cls_weights,
         bucket_offset_targets, bucket_offset_weights) = cls_reg_targets
        return (labels, label_weights, (bucket_cls_targets,
                                        bucket_offset_targets),
                (bucket_cls_weights, bucket_offset_weights))

    def bucket_target(self,
                      pos_proposals_list: list,
                      neg_proposals_list: list,
                      pos_gt_bboxes_list: list,
                      pos_gt_labels_list: list,
                      rcnn_train_cfg: ConfigDict,
                      concat: bool = True) -> tuple:
        """Compute bucketing estimation targets and fine regression targets for
        a batch of images."""
        (labels, label_weights, bucket_cls_targets, bucket_cls_weights,
         bucket_offset_targets, bucket_offset_weights) = multi_apply(
             self._bucket_target_single,
             pos_proposals_list,
             neg_proposals_list,
             pos_gt_bboxes_list,
             pos_gt_labels_list,
             cfg=rcnn_train_cfg)

        if concat:
            labels = torch.cat(labels, 0)
            label_weights = torch.cat(label_weights, 0)
            bucket_cls_targets = torch.cat(bucket_cls_targets, 0)
            bucket_cls_weights = torch.cat(bucket_cls_weights, 0)
            bucket_offset_targets = torch.cat(bucket_offset_targets, 0)
            bucket_offset_weights = torch.cat(bucket_offset_weights, 0)
        return (labels, label_weights, bucket_cls_targets, bucket_cls_weights,
                bucket_offset_targets, bucket_offset_weights)

    def _bucket_target_single(self, pos_proposals: Tensor,
                              neg_proposals: Tensor, pos_gt_bboxes: Tensor,
                              pos_gt_labels: Tensor, cfg: ConfigDict) -> tuple:
        """Compute bucketing estimation targets and fine regression targets for
        a single image.

        Args:
            pos_proposals (Tensor): positive proposals of a single image,
                 Shape (n_pos, 4)
            neg_proposals (Tensor): negative proposals of a single image,
                 Shape (n_neg, 4).
            pos_gt_bboxes (Tensor): gt bboxes assigned to positive proposals
                 of a single image, Shape (n_pos, 4).
            pos_gt_labels (Tensor): gt labels assigned to positive proposals
                 of a single image, Shape (n_pos, ).
            cfg (dict): Config of calculating targets

        Returns:
            tuple:

            - labels (Tensor): Labels in a single image. Shape (n,).
            - label_weights (Tensor): Label weights in a single image.
                Shape (n,)
            - bucket_cls_targets (Tensor): Bucket cls targets in
                a single image. Shape (n, num_buckets*2).
            - bucket_cls_weights (Tensor): Bucket cls weights in
                a single image. Shape (n, num_buckets*2).
            - bucket_offset_targets (Tensor): Bucket offset targets
                in a single image. Shape (n, num_buckets*2).
            - bucket_offset_targets (Tensor): Bucket offset weights
                in a single image. Shape (n, num_buckets*2).
        """
        num_pos = pos_proposals.size(0)
        num_neg = neg_proposals.size(0)
        num_samples = num_pos + num_neg
        labels = pos_gt_bboxes.new_full((num_samples, ),
                                        self.num_classes,
                                        dtype=torch.long)
        label_weights = pos_proposals.new_zeros(num_samples)
        bucket_cls_targets = pos_proposals.new_zeros(num_samples,
                                                     4 * self.side_num)
        bucket_cls_weights = pos_proposals.new_zeros(num_samples,
                                                     4 * self.side_num)
        bucket_offset_targets = pos_proposals.new_zeros(
            num_samples, 4 * self.side_num)
        bucket_offset_weights = pos_proposals.new_zeros(
            num_samples, 4 * self.side_num)
        if num_pos > 0:
            labels[:num_pos] = pos_gt_labels
            label_weights[:num_pos] = 1.0
            (pos_bucket_offset_targets, pos_bucket_offset_weights,
             pos_bucket_cls_targets,
             pos_bucket_cls_weights) = self.bbox_coder.encode(
                 pos_proposals, pos_gt_bboxes)
            bucket_cls_targets[:num_pos, :] = pos_bucket_cls_targets
            bucket_cls_weights[:num_pos, :] = pos_bucket_cls_weights
            bucket_offset_targets[:num_pos, :] = pos_bucket_offset_targets
            bucket_offset_weights[:num_pos, :] = pos_bucket_offset_weights
        if num_neg > 0:
            label_weights[-num_neg:] = 1.0
        return (labels, label_weights, bucket_cls_targets, bucket_cls_weights,
                bucket_offset_targets, bucket_offset_weights)

    def loss(self,
             cls_score: Tensor,
             bbox_pred: Tuple[Tensor, Tensor],
             rois: Tensor,
             labels: Tensor,
             label_weights: Tensor,
             bbox_targets: Tuple[Tensor, Tensor],
             bbox_weights: Tuple[Tensor, Tensor],
             reduction_override: Optional[str] = None) -> dict:
        """Calculate the loss based on the network predictions and targets.

        Args:
            cls_score (Tensor): Classification prediction
                results of all class, has shape
                (batch_size * num_proposals_single_image, num_classes)
            bbox_pred (Tensor): A tuple of regression prediction results
                containing `bucket_cls_preds and` `bucket_offset_preds`.
            rois (Tensor): RoIs with the shape
                (batch_size * num_proposals_single_image, 5) where the first
                column indicates batch id of each RoI.
            labels (Tensor): Gt_labels for all proposals in a batch, has
                shape (batch_size * num_proposals_single_image, ).
            label_weights (Tensor): Labels_weights for all proposals in a
                batch, has shape (batch_size * num_proposals_single_image, ).
            bbox_targets (Tuple[Tensor, Tensor]): A tuple of regression target
                containing `bucket_cls_targets` and `bucket_offset_targets`.
                the last dimension 4 represents [tl_x, tl_y, br_x, br_y].
            bbox_weights (Tuple[Tensor, Tensor]): A tuple of regression
                weights containing `bucket_cls_weights` and
                `bucket_offset_weights`.
            reduction_override (str, optional): The reduction
                method used to override the original reduction
                method of the loss. Options are "none",
                "mean" and "sum". Defaults to None,

        Returns:
            dict: A dictionary of loss.
        """
        losses = dict()
        if cls_score is not None:
            avg_factor = max(torch.sum(label_weights > 0).float().item(), 1.)
            losses['loss_cls'] = self.loss_cls(
                cls_score,
                labels,
                label_weights,
                avg_factor=avg_factor,
                reduction_override=reduction_override)
            losses['acc'] = accuracy(cls_score, labels)

        if bbox_pred is not None:
            bucket_cls_preds, bucket_offset_preds = bbox_pred
            bucket_cls_targets, bucket_offset_targets = bbox_targets
            bucket_cls_weights, bucket_offset_weights = bbox_weights
            # edge cls
            bucket_cls_preds = bucket_cls_preds.view(-1, self.side_num)
            bucket_cls_targets = bucket_cls_targets.view(-1, self.side_num)
            bucket_cls_weights = bucket_cls_weights.view(-1, self.side_num)
            losses['loss_bbox_cls'] = self.loss_bbox_cls(
                bucket_cls_preds,
                bucket_cls_targets,
                bucket_cls_weights,
                avg_factor=bucket_cls_targets.size(0),
                reduction_override=reduction_override)

            losses['loss_bbox_reg'] = self.loss_bbox_reg(
                bucket_offset_preds,
                bucket_offset_targets,
                bucket_offset_weights,
                avg_factor=bucket_offset_targets.size(0),
                reduction_override=reduction_override)

        return losses

    def _predict_by_feat_single(
            self,
            roi: Tensor,
            cls_score: Tensor,
            bbox_pred: Tuple[Tensor, Tensor],
            img_meta: dict,
            rescale: bool = False,
            rcnn_test_cfg: Optional[ConfigDict] = None) -> InstanceData:
        """Transform a single image's features extracted from the head into
        bbox results.

        Args:
            roi (Tensor): Boxes to be transformed. Has shape (num_boxes, 5).
                last dimension 5 arrange as (batch_index, x1, y1, x2, y2).
            cls_score (Tensor): Box scores, has shape
                (num_boxes, num_classes + 1).
            bbox_pred (Tuple[Tensor, Tensor]): Box cls preds and offset preds.
            img_meta (dict): image information.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.
            rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of Bbox Head.
                Defaults to None

        Returns:
            :obj:`InstanceData`: Detection results of each image
            Each item usually contains following keys.

            - scores (Tensor): Classification scores, has a shape
              (num_instance, )
            - labels (Tensor): Labels of bboxes, has a shape
              (num_instances, ).
            - bboxes (Tensor): Has a shape (num_instances, 4),
              the last dimension 4 arrange as (x1, y1, x2, y2).
        """
        results = InstanceData()
        if isinstance(cls_score, list):
            cls_score = sum(cls_score) / float(len(cls_score))
        scores = F.softmax(cls_score, dim=1) if cls_score is not None else None
        img_shape = img_meta['img_shape']
        if bbox_pred is not None:
            bboxes, confidences = self.bbox_coder.decode(
                roi[:, 1:], bbox_pred, img_shape)
        else:
            bboxes = roi[:, 1:].clone()
            confidences = None
            if img_shape is not None:
                bboxes[:, [0, 2]].clamp_(min=0, max=img_shape[1] - 1)
                bboxes[:, [1, 3]].clamp_(min=0, max=img_shape[0] - 1)

        if rescale and bboxes.size(0) > 0:
            assert img_meta.get('scale_factor') is not None
            scale_factor = bboxes.new_tensor(img_meta['scale_factor']).repeat(
                (1, 2))
            bboxes = (bboxes.view(bboxes.size(0), -1, 4) / scale_factor).view(
                bboxes.size()[0], -1)

        if rcnn_test_cfg is None:
            results.bboxes = bboxes
            results.scores = scores
        else:
            det_bboxes, det_labels = multiclass_nms(
                bboxes,
                scores,
                rcnn_test_cfg.score_thr,
                rcnn_test_cfg.nms,
                rcnn_test_cfg.max_per_img,
                score_factors=confidences)
            results.bboxes = det_bboxes[:, :4]
            results.scores = det_bboxes[:, -1]
            results.labels = det_labels
        return results

    def refine_bboxes(self, sampling_results: List[SamplingResult],
                      bbox_results: dict,
                      batch_img_metas: List[dict]) -> InstanceList:
        """Refine bboxes during training.

        Args:
            sampling_results (List[:obj:`SamplingResult`]): Sampling results.
            bbox_results (dict): Usually is a dictionary with keys:

                - `cls_score` (Tensor): Classification scores.
                - `bbox_pred` (Tensor): Box energies / deltas.
                - `rois` (Tensor): RoIs with the shape (n, 5) where the first
                  column indicates batch id of each RoI.
                - `bbox_targets` (tuple):  Ground truth for proposals in a
                  single image. Containing the following list of Tensors:
                  (labels, label_weights, bbox_targets, bbox_weights)
            batch_img_metas (List[dict]): List of image information.

        Returns:
            list[:obj:`InstanceData`]: Refined bboxes of each image.
        """
        pos_is_gts = [res.pos_is_gt for res in sampling_results]
        # bbox_targets is a tuple
        labels = bbox_results['bbox_targets'][0]
        cls_scores = bbox_results['cls_score']
        rois = bbox_results['rois']
        bbox_preds = bbox_results['bbox_pred']

        if cls_scores.numel() == 0:
            return None

        labels = torch.where(labels == self.num_classes,
                             cls_scores[:, :-1].argmax(1), labels)

        img_ids = rois[:, 0].long().unique(sorted=True)
        assert img_ids.numel() <= len(batch_img_metas)

        results_list = []
        for i in range(len(batch_img_metas)):
            inds = torch.nonzero(
                rois[:, 0] == i, as_tuple=False).squeeze(dim=1)
            num_rois = inds.numel()

            bboxes_ = rois[inds, 1:]
            label_ = labels[inds]
            edge_cls_preds, edge_offset_preds = bbox_preds
            edge_cls_preds_ = edge_cls_preds[inds]
            edge_offset_preds_ = edge_offset_preds[inds]
            bbox_pred_ = (edge_cls_preds_, edge_offset_preds_)
            img_meta_ = batch_img_metas[i]
            pos_is_gts_ = pos_is_gts[i]

            bboxes = self.regress_by_class(bboxes_, label_, bbox_pred_,
                                           img_meta_)
            # filter gt bboxes
            pos_keep = 1 - pos_is_gts_
            keep_inds = pos_is_gts_.new_ones(num_rois)
            keep_inds[:len(pos_is_gts_)] = pos_keep
            results = InstanceData(bboxes=bboxes[keep_inds.type(torch.bool)])
            results_list.append(results)

        return results_list

    def regress_by_class(self, rois: Tensor, label: Tensor, bbox_pred: tuple,
                         img_meta: dict) -> Tensor:
        """Regress the bbox for the predicted class. Used in Cascade R-CNN.

        Args:
            rois (Tensor): shape (n, 4) or (n, 5)
            label (Tensor): shape (n, )
            bbox_pred (Tuple[Tensor]): shape [(n, num_buckets *2), \
                (n, num_buckets *2)]
            img_meta (dict): Image meta info.

        Returns:
            Tensor: Regressed bboxes, the same shape as input rois.
        """
        assert rois.size(1) == 4 or rois.size(1) == 5

        if rois.size(1) == 4:
            new_rois, _ = self.bbox_coder.decode(rois, bbox_pred,
                                                 img_meta['img_shape'])
        else:
            bboxes, _ = self.bbox_coder.decode(rois[:, 1:], bbox_pred,
                                               img_meta['img_shape'])
            new_rois = torch.cat((rois[:, [0]], bboxes), dim=1)

        return new_rois