Spaces:
Runtime error
Runtime error
File size: 43,609 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import math
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, is_norm
from mmcv.ops import batched_nms
from mmengine.model import (BaseModule, bias_init_with_prob, constant_init,
normal_init)
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.models.layers.transformer import inverse_sigmoid
from mmdet.models.utils import (filter_scores_and_topk, multi_apply,
select_single_mlvl, sigmoid_geometric_mean)
from mmdet.registry import MODELS
from mmdet.structures.bbox import (cat_boxes, distance2bbox, get_box_tensor,
get_box_wh, scale_boxes)
from mmdet.utils import ConfigType, InstanceList, OptInstanceList, reduce_mean
from .rtmdet_head import RTMDetHead
@MODELS.register_module()
class RTMDetInsHead(RTMDetHead):
"""Detection Head of RTMDet-Ins.
Args:
num_prototypes (int): Number of mask prototype features extracted
from the mask head. Defaults to 8.
dyconv_channels (int): Channel of the dynamic conv layers.
Defaults to 8.
num_dyconvs (int): Number of the dynamic convolution layers.
Defaults to 3.
mask_loss_stride (int): Down sample stride of the masks for loss
computation. Defaults to 4.
loss_mask (:obj:`ConfigDict` or dict): Config dict for mask loss.
"""
def __init__(self,
*args,
num_prototypes: int = 8,
dyconv_channels: int = 8,
num_dyconvs: int = 3,
mask_loss_stride: int = 4,
loss_mask=dict(
type='DiceLoss',
loss_weight=2.0,
eps=5e-6,
reduction='mean'),
**kwargs) -> None:
self.num_prototypes = num_prototypes
self.num_dyconvs = num_dyconvs
self.dyconv_channels = dyconv_channels
self.mask_loss_stride = mask_loss_stride
super().__init__(*args, **kwargs)
self.loss_mask = MODELS.build(loss_mask)
def _init_layers(self) -> None:
"""Initialize layers of the head."""
super()._init_layers()
# a branch to predict kernels of dynamic convs
self.kernel_convs = nn.ModuleList()
# calculate num dynamic parameters
weight_nums, bias_nums = [], []
for i in range(self.num_dyconvs):
if i == 0:
weight_nums.append(
# mask prototype and coordinate features
(self.num_prototypes + 2) * self.dyconv_channels)
bias_nums.append(self.dyconv_channels * 1)
elif i == self.num_dyconvs - 1:
weight_nums.append(self.dyconv_channels * 1)
bias_nums.append(1)
else:
weight_nums.append(self.dyconv_channels * self.dyconv_channels)
bias_nums.append(self.dyconv_channels * 1)
self.weight_nums = weight_nums
self.bias_nums = bias_nums
self.num_gen_params = sum(weight_nums) + sum(bias_nums)
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.kernel_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
pred_pad_size = self.pred_kernel_size // 2
self.rtm_kernel = nn.Conv2d(
self.feat_channels,
self.num_gen_params,
self.pred_kernel_size,
padding=pred_pad_size)
self.mask_head = MaskFeatModule(
in_channels=self.in_channels,
feat_channels=self.feat_channels,
stacked_convs=4,
num_levels=len(self.prior_generator.strides),
num_prototypes=self.num_prototypes,
act_cfg=self.act_cfg,
norm_cfg=self.norm_cfg)
def forward(self, feats: Tuple[Tensor, ...]) -> tuple:
"""Forward features from the upstream network.
Args:
feats (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple: Usually a tuple of classification scores and bbox prediction
- cls_scores (list[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * num_classes.
- bbox_preds (list[Tensor]): Box energies / deltas for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * 4.
- kernel_preds (list[Tensor]): Dynamic conv kernels for all scale
levels, each is a 4D-tensor, the channels number is
num_gen_params.
- mask_feat (Tensor): Output feature of the mask head. Each is a
4D-tensor, the channels number is num_prototypes.
"""
mask_feat = self.mask_head(feats)
cls_scores = []
bbox_preds = []
kernel_preds = []
for idx, (x, scale, stride) in enumerate(
zip(feats, self.scales, self.prior_generator.strides)):
cls_feat = x
reg_feat = x
kernel_feat = x
for cls_layer in self.cls_convs:
cls_feat = cls_layer(cls_feat)
cls_score = self.rtm_cls(cls_feat)
for kernel_layer in self.kernel_convs:
kernel_feat = kernel_layer(kernel_feat)
kernel_pred = self.rtm_kernel(kernel_feat)
for reg_layer in self.reg_convs:
reg_feat = reg_layer(reg_feat)
if self.with_objectness:
objectness = self.rtm_obj(reg_feat)
cls_score = inverse_sigmoid(
sigmoid_geometric_mean(cls_score, objectness))
reg_dist = scale(self.rtm_reg(reg_feat)) * stride[0]
cls_scores.append(cls_score)
bbox_preds.append(reg_dist)
kernel_preds.append(kernel_pred)
return tuple(cls_scores), tuple(bbox_preds), tuple(
kernel_preds), mask_feat
def predict_by_feat(self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
kernel_preds: List[Tensor],
mask_feat: Tensor,
score_factors: Optional[List[Tensor]] = None,
batch_img_metas: Optional[List[dict]] = None,
cfg: Optional[ConfigType] = None,
rescale: bool = False,
with_nms: bool = True) -> InstanceList:
"""Transform a batch of output features extracted from the head into
bbox results.
Note: When score_factors is not None, the cls_scores are
usually multiplied by it then obtain the real score used in NMS,
such as CenterNess in FCOS, IoU branch in ATSS.
Args:
cls_scores (list[Tensor]): Classification scores for all
scale levels, each is a 4D-tensor, has shape
(batch_size, num_priors * num_classes, H, W).
bbox_preds (list[Tensor]): Box energies / deltas for all
scale levels, each is a 4D-tensor, has shape
(batch_size, num_priors * 4, H, W).
kernel_preds (list[Tensor]): Kernel predictions of dynamic
convs for all scale levels, each is a 4D-tensor, has shape
(batch_size, num_params, H, W).
mask_feat (Tensor): Mask prototype features extracted from the
mask head, has shape (batch_size, num_prototypes, H, W).
score_factors (list[Tensor], optional): Score factor for
all scale level, each is a 4D-tensor, has shape
(batch_size, num_priors * 1, H, W). Defaults to None.
batch_img_metas (list[dict], Optional): Batch image meta info.
Defaults to None.
cfg (ConfigDict, optional): Test / postprocessing
configuration, if None, test_cfg would be used.
Defaults to None.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
with_nms (bool): If True, do nms before return boxes.
Defaults to True.
Returns:
list[:obj:`InstanceData`]: Object detection results of each image
after the post process. Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
- masks (Tensor): Has a shape (num_instances, h, w).
"""
assert len(cls_scores) == len(bbox_preds)
if score_factors is None:
# e.g. Retina, FreeAnchor, Foveabox, etc.
with_score_factors = False
else:
# e.g. FCOS, PAA, ATSS, AutoAssign, etc.
with_score_factors = True
assert len(cls_scores) == len(score_factors)
num_levels = len(cls_scores)
featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
mlvl_priors = self.prior_generator.grid_priors(
featmap_sizes,
dtype=cls_scores[0].dtype,
device=cls_scores[0].device,
with_stride=True)
result_list = []
for img_id in range(len(batch_img_metas)):
img_meta = batch_img_metas[img_id]
cls_score_list = select_single_mlvl(
cls_scores, img_id, detach=True)
bbox_pred_list = select_single_mlvl(
bbox_preds, img_id, detach=True)
kernel_pred_list = select_single_mlvl(
kernel_preds, img_id, detach=True)
if with_score_factors:
score_factor_list = select_single_mlvl(
score_factors, img_id, detach=True)
else:
score_factor_list = [None for _ in range(num_levels)]
results = self._predict_by_feat_single(
cls_score_list=cls_score_list,
bbox_pred_list=bbox_pred_list,
kernel_pred_list=kernel_pred_list,
mask_feat=mask_feat[img_id],
score_factor_list=score_factor_list,
mlvl_priors=mlvl_priors,
img_meta=img_meta,
cfg=cfg,
rescale=rescale,
with_nms=with_nms)
result_list.append(results)
return result_list
def _predict_by_feat_single(self,
cls_score_list: List[Tensor],
bbox_pred_list: List[Tensor],
kernel_pred_list: List[Tensor],
mask_feat: Tensor,
score_factor_list: List[Tensor],
mlvl_priors: List[Tensor],
img_meta: dict,
cfg: ConfigType,
rescale: bool = False,
with_nms: bool = True) -> InstanceData:
"""Transform a single image's features extracted from the head into
bbox and mask results.
Args:
cls_score_list (list[Tensor]): Box scores from all scale
levels of a single image, each item has shape
(num_priors * num_classes, H, W).
bbox_pred_list (list[Tensor]): Box energies / deltas from
all scale levels of a single image, each item has shape
(num_priors * 4, H, W).
kernel_preds (list[Tensor]): Kernel predictions of dynamic
convs for all scale levels of a single image, each is a
4D-tensor, has shape (num_params, H, W).
mask_feat (Tensor): Mask prototype features of a single image
extracted from the mask head, has shape (num_prototypes, H, W).
score_factor_list (list[Tensor]): Score factor from all scale
levels of a single image, each item has shape
(num_priors * 1, H, W).
mlvl_priors (list[Tensor]): Each element in the list is
the priors of a single level in feature pyramid. In all
anchor-based methods, it has shape (num_priors, 4). In
all anchor-free methods, it has shape (num_priors, 2)
when `with_stride=True`, otherwise it still has shape
(num_priors, 4).
img_meta (dict): Image meta info.
cfg (mmengine.Config): Test / postprocessing configuration,
if None, test_cfg would be used.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
with_nms (bool): If True, do nms before return boxes.
Defaults to True.
Returns:
:obj:`InstanceData`: Detection results of each image
after the post process.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
- masks (Tensor): Has a shape (num_instances, h, w).
"""
if score_factor_list[0] is None:
# e.g. Retina, FreeAnchor, etc.
with_score_factors = False
else:
# e.g. FCOS, PAA, ATSS, etc.
with_score_factors = True
cfg = self.test_cfg if cfg is None else cfg
cfg = copy.deepcopy(cfg)
img_shape = img_meta['img_shape']
nms_pre = cfg.get('nms_pre', -1)
mlvl_bbox_preds = []
mlvl_kernels = []
mlvl_valid_priors = []
mlvl_scores = []
mlvl_labels = []
if with_score_factors:
mlvl_score_factors = []
else:
mlvl_score_factors = None
for level_idx, (cls_score, bbox_pred, kernel_pred,
score_factor, priors) in \
enumerate(zip(cls_score_list, bbox_pred_list, kernel_pred_list,
score_factor_list, mlvl_priors)):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
dim = self.bbox_coder.encode_size
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, dim)
if with_score_factors:
score_factor = score_factor.permute(1, 2,
0).reshape(-1).sigmoid()
cls_score = cls_score.permute(1, 2,
0).reshape(-1, self.cls_out_channels)
kernel_pred = kernel_pred.permute(1, 2, 0).reshape(
-1, self.num_gen_params)
if self.use_sigmoid_cls:
scores = cls_score.sigmoid()
else:
# remind that we set FG labels to [0, num_class-1]
# since mmdet v2.0
# BG cat_id: num_class
scores = cls_score.softmax(-1)[:, :-1]
# After https://github.com/open-mmlab/mmdetection/pull/6268/,
# this operation keeps fewer bboxes under the same `nms_pre`.
# There is no difference in performance for most models. If you
# find a slight drop in performance, you can set a larger
# `nms_pre` than before.
score_thr = cfg.get('score_thr', 0)
results = filter_scores_and_topk(
scores, score_thr, nms_pre,
dict(
bbox_pred=bbox_pred,
priors=priors,
kernel_pred=kernel_pred))
scores, labels, keep_idxs, filtered_results = results
bbox_pred = filtered_results['bbox_pred']
priors = filtered_results['priors']
kernel_pred = filtered_results['kernel_pred']
if with_score_factors:
score_factor = score_factor[keep_idxs]
mlvl_bbox_preds.append(bbox_pred)
mlvl_valid_priors.append(priors)
mlvl_scores.append(scores)
mlvl_labels.append(labels)
mlvl_kernels.append(kernel_pred)
if with_score_factors:
mlvl_score_factors.append(score_factor)
bbox_pred = torch.cat(mlvl_bbox_preds)
priors = cat_boxes(mlvl_valid_priors)
bboxes = self.bbox_coder.decode(
priors[..., :2], bbox_pred, max_shape=img_shape)
results = InstanceData()
results.bboxes = bboxes
results.priors = priors
results.scores = torch.cat(mlvl_scores)
results.labels = torch.cat(mlvl_labels)
results.kernels = torch.cat(mlvl_kernels)
if with_score_factors:
results.score_factors = torch.cat(mlvl_score_factors)
return self._bbox_mask_post_process(
results=results,
mask_feat=mask_feat,
cfg=cfg,
rescale=rescale,
with_nms=with_nms,
img_meta=img_meta)
def _bbox_mask_post_process(
self,
results: InstanceData,
mask_feat,
cfg: ConfigType,
rescale: bool = False,
with_nms: bool = True,
img_meta: Optional[dict] = None) -> InstanceData:
"""bbox and mask post-processing method.
The boxes would be rescaled to the original image scale and do
the nms operation. Usually `with_nms` is False is used for aug test.
Args:
results (:obj:`InstaceData`): Detection instance results,
each item has shape (num_bboxes, ).
cfg (ConfigDict): Test / postprocessing configuration,
if None, test_cfg would be used.
rescale (bool): If True, return boxes in original image space.
Default to False.
with_nms (bool): If True, do nms before return boxes.
Default to True.
img_meta (dict, optional): Image meta info. Defaults to None.
Returns:
:obj:`InstanceData`: Detection results of each image
after the post process.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
- masks (Tensor): Has a shape (num_instances, h, w).
"""
stride = self.prior_generator.strides[0][0]
if rescale:
assert img_meta.get('scale_factor') is not None
scale_factor = [1 / s for s in img_meta['scale_factor']]
results.bboxes = scale_boxes(results.bboxes, scale_factor)
if hasattr(results, 'score_factors'):
# TODO: Add sqrt operation in order to be consistent with
# the paper.
score_factors = results.pop('score_factors')
results.scores = results.scores * score_factors
# filter small size bboxes
if cfg.get('min_bbox_size', -1) >= 0:
w, h = get_box_wh(results.bboxes)
valid_mask = (w > cfg.min_bbox_size) & (h > cfg.min_bbox_size)
if not valid_mask.all():
results = results[valid_mask]
# TODO: deal with `with_nms` and `nms_cfg=None` in test_cfg
assert with_nms, 'with_nms must be True for RTMDet-Ins'
if results.bboxes.numel() > 0:
bboxes = get_box_tensor(results.bboxes)
det_bboxes, keep_idxs = batched_nms(bboxes, results.scores,
results.labels, cfg.nms)
results = results[keep_idxs]
# some nms would reweight the score, such as softnms
results.scores = det_bboxes[:, -1]
results = results[:cfg.max_per_img]
# process masks
mask_logits = self._mask_predict_by_feat_single(
mask_feat, results.kernels, results.priors)
mask_logits = F.interpolate(
mask_logits.unsqueeze(0), scale_factor=stride, mode='bilinear')
if rescale:
ori_h, ori_w = img_meta['ori_shape'][:2]
mask_logits = F.interpolate(
mask_logits,
size=[
math.ceil(mask_logits.shape[-2] * scale_factor[0]),
math.ceil(mask_logits.shape[-1] * scale_factor[1])
],
mode='bilinear',
align_corners=False)[..., :ori_h, :ori_w]
masks = mask_logits.sigmoid().squeeze(0)
masks = masks > cfg.mask_thr_binary
results.masks = masks
else:
h, w = img_meta['ori_shape'][:2] if rescale else img_meta[
'img_shape'][:2]
results.masks = torch.zeros(
size=(results.bboxes.shape[0], h, w),
dtype=torch.bool,
device=results.bboxes.device)
return results
def parse_dynamic_params(self, flatten_kernels: Tensor) -> tuple:
"""split kernel head prediction to conv weight and bias."""
n_inst = flatten_kernels.size(0)
n_layers = len(self.weight_nums)
params_splits = list(
torch.split_with_sizes(
flatten_kernels, self.weight_nums + self.bias_nums, dim=1))
weight_splits = params_splits[:n_layers]
bias_splits = params_splits[n_layers:]
for i in range(n_layers):
if i < n_layers - 1:
weight_splits[i] = weight_splits[i].reshape(
n_inst * self.dyconv_channels, -1, 1, 1)
bias_splits[i] = bias_splits[i].reshape(n_inst *
self.dyconv_channels)
else:
weight_splits[i] = weight_splits[i].reshape(n_inst, -1, 1, 1)
bias_splits[i] = bias_splits[i].reshape(n_inst)
return weight_splits, bias_splits
def _mask_predict_by_feat_single(self, mask_feat: Tensor, kernels: Tensor,
priors: Tensor) -> Tensor:
"""Generate mask logits from mask features with dynamic convs.
Args:
mask_feat (Tensor): Mask prototype features.
Has shape (num_prototypes, H, W).
kernels (Tensor): Kernel parameters for each instance.
Has shape (num_instance, num_params)
priors (Tensor): Center priors for each instance.
Has shape (num_instance, 4).
Returns:
Tensor: Instance segmentation masks for each instance.
Has shape (num_instance, H, W).
"""
num_inst = priors.shape[0]
h, w = mask_feat.size()[-2:]
if num_inst < 1:
return torch.empty(
size=(num_inst, h, w),
dtype=mask_feat.dtype,
device=mask_feat.device)
if len(mask_feat.shape) < 4:
mask_feat.unsqueeze(0)
coord = self.prior_generator.single_level_grid_priors(
(h, w), level_idx=0).reshape(1, -1, 2)
num_inst = priors.shape[0]
points = priors[:, :2].reshape(-1, 1, 2)
strides = priors[:, 2:].reshape(-1, 1, 2)
relative_coord = (points - coord).permute(0, 2, 1) / (
strides[..., 0].reshape(-1, 1, 1) * 8)
relative_coord = relative_coord.reshape(num_inst, 2, h, w)
mask_feat = torch.cat(
[relative_coord,
mask_feat.repeat(num_inst, 1, 1, 1)], dim=1)
weights, biases = self.parse_dynamic_params(kernels)
n_layers = len(weights)
x = mask_feat.reshape(1, -1, h, w)
for i, (weight, bias) in enumerate(zip(weights, biases)):
x = F.conv2d(
x, weight, bias=bias, stride=1, padding=0, groups=num_inst)
if i < n_layers - 1:
x = F.relu(x)
x = x.reshape(num_inst, h, w)
return x
def loss_mask_by_feat(self, mask_feats: Tensor, flatten_kernels: Tensor,
sampling_results_list: list,
batch_gt_instances: InstanceList) -> Tensor:
"""Compute instance segmentation loss.
Args:
mask_feats (list[Tensor]): Mask prototype features extracted from
the mask head. Has shape (N, num_prototypes, H, W)
flatten_kernels (list[Tensor]): Kernels of the dynamic conv layers.
Has shape (N, num_instances, num_params)
sampling_results_list (list[:obj:`SamplingResults`]) Batch of
assignment results.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
Returns:
Tensor: The mask loss tensor.
"""
batch_pos_mask_logits = []
pos_gt_masks = []
for idx, (mask_feat, kernels, sampling_results,
gt_instances) in enumerate(
zip(mask_feats, flatten_kernels, sampling_results_list,
batch_gt_instances)):
pos_priors = sampling_results.pos_priors
pos_inds = sampling_results.pos_inds
pos_kernels = kernels[pos_inds] # n_pos, num_gen_params
pos_mask_logits = self._mask_predict_by_feat_single(
mask_feat, pos_kernels, pos_priors)
if gt_instances.masks.numel() == 0:
gt_masks = torch.empty_like(gt_instances.masks)
else:
gt_masks = gt_instances.masks[
sampling_results.pos_assigned_gt_inds, :]
batch_pos_mask_logits.append(pos_mask_logits)
pos_gt_masks.append(gt_masks)
pos_gt_masks = torch.cat(pos_gt_masks, 0)
batch_pos_mask_logits = torch.cat(batch_pos_mask_logits, 0)
# avg_factor
num_pos = batch_pos_mask_logits.shape[0]
num_pos = reduce_mean(mask_feats.new_tensor([num_pos
])).clamp_(min=1).item()
if batch_pos_mask_logits.shape[0] == 0:
return mask_feats.sum() * 0
scale = self.prior_generator.strides[0][0] // self.mask_loss_stride
# upsample pred masks
batch_pos_mask_logits = F.interpolate(
batch_pos_mask_logits.unsqueeze(0),
scale_factor=scale,
mode='bilinear',
align_corners=False).squeeze(0)
# downsample gt masks
pos_gt_masks = pos_gt_masks[:, self.mask_loss_stride //
2::self.mask_loss_stride,
self.mask_loss_stride //
2::self.mask_loss_stride]
loss_mask = self.loss_mask(
batch_pos_mask_logits,
pos_gt_masks,
weight=None,
avg_factor=num_pos)
return loss_mask
def loss_by_feat(self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
kernel_preds: List[Tensor],
mask_feat: Tensor,
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None):
"""Compute losses of the head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]): Decoded box for each scale
level with shape (N, num_anchors * 4, H, W) in
[tl_x, tl_y, br_x, br_y] format.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
num_imgs = len(batch_img_metas)
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.prior_generator.num_levels
device = cls_scores[0].device
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, batch_img_metas, device=device)
flatten_cls_scores = torch.cat([
cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1,
self.cls_out_channels)
for cls_score in cls_scores
], 1)
flatten_kernels = torch.cat([
kernel_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1,
self.num_gen_params)
for kernel_pred in kernel_preds
], 1)
decoded_bboxes = []
for anchor, bbox_pred in zip(anchor_list[0], bbox_preds):
anchor = anchor.reshape(-1, 4)
bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
bbox_pred = distance2bbox(anchor, bbox_pred)
decoded_bboxes.append(bbox_pred)
flatten_bboxes = torch.cat(decoded_bboxes, 1)
for gt_instances in batch_gt_instances:
gt_instances.masks = gt_instances.masks.to_tensor(
dtype=torch.bool, device=device)
cls_reg_targets = self.get_targets(
flatten_cls_scores,
flatten_bboxes,
anchor_list,
valid_flag_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore=batch_gt_instances_ignore)
(anchor_list, labels_list, label_weights_list, bbox_targets_list,
assign_metrics_list, sampling_results_list) = cls_reg_targets
losses_cls, losses_bbox,\
cls_avg_factors, bbox_avg_factors = multi_apply(
self.loss_by_feat_single,
cls_scores,
decoded_bboxes,
labels_list,
label_weights_list,
bbox_targets_list,
assign_metrics_list,
self.prior_generator.strides)
cls_avg_factor = reduce_mean(sum(cls_avg_factors)).clamp_(min=1).item()
losses_cls = list(map(lambda x: x / cls_avg_factor, losses_cls))
bbox_avg_factor = reduce_mean(
sum(bbox_avg_factors)).clamp_(min=1).item()
losses_bbox = list(map(lambda x: x / bbox_avg_factor, losses_bbox))
loss_mask = self.loss_mask_by_feat(mask_feat, flatten_kernels,
sampling_results_list,
batch_gt_instances)
loss = dict(
loss_cls=losses_cls, loss_bbox=losses_bbox, loss_mask=loss_mask)
return loss
class MaskFeatModule(BaseModule):
"""Mask feature head used in RTMDet-Ins.
Args:
in_channels (int): Number of channels in the input feature map.
feat_channels (int): Number of hidden channels of the mask feature
map branch.
num_levels (int): The starting feature map level from RPN that
will be used to predict the mask feature map.
num_prototypes (int): Number of output channel of the mask feature
map branch. This is the channel count of the mask
feature map that to be dynamically convolved with the predicted
kernel.
stacked_convs (int): Number of convs in mask feature branch.
act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer.
Default: dict(type='ReLU', inplace=True)
norm_cfg (dict): Config dict for normalization layer. Default: None.
"""
def __init__(
self,
in_channels: int,
feat_channels: int = 256,
stacked_convs: int = 4,
num_levels: int = 3,
num_prototypes: int = 8,
act_cfg: ConfigType = dict(type='ReLU', inplace=True),
norm_cfg: ConfigType = dict(type='BN')
) -> None:
super().__init__(init_cfg=None)
self.num_levels = num_levels
self.fusion_conv = nn.Conv2d(num_levels * in_channels, in_channels, 1)
convs = []
for i in range(stacked_convs):
in_c = in_channels if i == 0 else feat_channels
convs.append(
ConvModule(
in_c,
feat_channels,
3,
padding=1,
act_cfg=act_cfg,
norm_cfg=norm_cfg))
self.stacked_convs = nn.Sequential(*convs)
self.projection = nn.Conv2d(
feat_channels, num_prototypes, kernel_size=1)
def forward(self, features: Tuple[Tensor, ...]) -> Tensor:
# multi-level feature fusion
fusion_feats = [features[0]]
size = features[0].shape[-2:]
for i in range(1, self.num_levels):
f = F.interpolate(features[i], size=size, mode='bilinear')
fusion_feats.append(f)
fusion_feats = torch.cat(fusion_feats, dim=1)
fusion_feats = self.fusion_conv(fusion_feats)
# pred mask feats
mask_features = self.stacked_convs(fusion_feats)
mask_features = self.projection(mask_features)
return mask_features
@MODELS.register_module()
class RTMDetInsSepBNHead(RTMDetInsHead):
"""Detection Head of RTMDet-Ins with sep-bn layers.
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
share_conv (bool): Whether to share conv layers between stages.
Defaults to True.
norm_cfg (:obj:`ConfigDict` or dict)): Config dict for normalization
layer. Defaults to dict(type='BN').
act_cfg (:obj:`ConfigDict` or dict)): Config dict for activation layer.
Defaults to dict(type='SiLU', inplace=True).
pred_kernel_size (int): Kernel size of prediction layer. Defaults to 1.
"""
def __init__(self,
num_classes: int,
in_channels: int,
share_conv: bool = True,
with_objectness: bool = False,
norm_cfg: ConfigType = dict(type='BN', requires_grad=True),
act_cfg: ConfigType = dict(type='SiLU', inplace=True),
pred_kernel_size: int = 1,
**kwargs) -> None:
self.share_conv = share_conv
super().__init__(
num_classes,
in_channels,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
pred_kernel_size=pred_kernel_size,
with_objectness=with_objectness,
**kwargs)
def _init_layers(self) -> None:
"""Initialize layers of the head."""
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
self.kernel_convs = nn.ModuleList()
self.rtm_cls = nn.ModuleList()
self.rtm_reg = nn.ModuleList()
self.rtm_kernel = nn.ModuleList()
self.rtm_obj = nn.ModuleList()
# calculate num dynamic parameters
weight_nums, bias_nums = [], []
for i in range(self.num_dyconvs):
if i == 0:
weight_nums.append(
(self.num_prototypes + 2) * self.dyconv_channels)
bias_nums.append(self.dyconv_channels)
elif i == self.num_dyconvs - 1:
weight_nums.append(self.dyconv_channels)
bias_nums.append(1)
else:
weight_nums.append(self.dyconv_channels * self.dyconv_channels)
bias_nums.append(self.dyconv_channels)
self.weight_nums = weight_nums
self.bias_nums = bias_nums
self.num_gen_params = sum(weight_nums) + sum(bias_nums)
pred_pad_size = self.pred_kernel_size // 2
for n in range(len(self.prior_generator.strides)):
cls_convs = nn.ModuleList()
reg_convs = nn.ModuleList()
kernel_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
kernel_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
self.cls_convs.append(cls_convs)
self.reg_convs.append(cls_convs)
self.kernel_convs.append(kernel_convs)
self.rtm_cls.append(
nn.Conv2d(
self.feat_channels,
self.num_base_priors * self.cls_out_channels,
self.pred_kernel_size,
padding=pred_pad_size))
self.rtm_reg.append(
nn.Conv2d(
self.feat_channels,
self.num_base_priors * 4,
self.pred_kernel_size,
padding=pred_pad_size))
self.rtm_kernel.append(
nn.Conv2d(
self.feat_channels,
self.num_gen_params,
self.pred_kernel_size,
padding=pred_pad_size))
if self.with_objectness:
self.rtm_obj.append(
nn.Conv2d(
self.feat_channels,
1,
self.pred_kernel_size,
padding=pred_pad_size))
if self.share_conv:
for n in range(len(self.prior_generator.strides)):
for i in range(self.stacked_convs):
self.cls_convs[n][i].conv = self.cls_convs[0][i].conv
self.reg_convs[n][i].conv = self.reg_convs[0][i].conv
self.mask_head = MaskFeatModule(
in_channels=self.in_channels,
feat_channels=self.feat_channels,
stacked_convs=4,
num_levels=len(self.prior_generator.strides),
num_prototypes=self.num_prototypes,
act_cfg=self.act_cfg,
norm_cfg=self.norm_cfg)
def init_weights(self) -> None:
"""Initialize weights of the head."""
for m in self.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, mean=0, std=0.01)
if is_norm(m):
constant_init(m, 1)
bias_cls = bias_init_with_prob(0.01)
for rtm_cls, rtm_reg, rtm_kernel in zip(self.rtm_cls, self.rtm_reg,
self.rtm_kernel):
normal_init(rtm_cls, std=0.01, bias=bias_cls)
normal_init(rtm_reg, std=0.01, bias=1)
if self.with_objectness:
for rtm_obj in self.rtm_obj:
normal_init(rtm_obj, std=0.01, bias=bias_cls)
def forward(self, feats: Tuple[Tensor, ...]) -> tuple:
"""Forward features from the upstream network.
Args:
feats (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple: Usually a tuple of classification scores and bbox prediction
- cls_scores (list[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * num_classes.
- bbox_preds (list[Tensor]): Box energies / deltas for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * 4.
- kernel_preds (list[Tensor]): Dynamic conv kernels for all scale
levels, each is a 4D-tensor, the channels number is
num_gen_params.
- mask_feat (Tensor): Output feature of the mask head. Each is a
4D-tensor, the channels number is num_prototypes.
"""
mask_feat = self.mask_head(feats)
cls_scores = []
bbox_preds = []
kernel_preds = []
for idx, (x, stride) in enumerate(
zip(feats, self.prior_generator.strides)):
cls_feat = x
reg_feat = x
kernel_feat = x
for cls_layer in self.cls_convs[idx]:
cls_feat = cls_layer(cls_feat)
cls_score = self.rtm_cls[idx](cls_feat)
for kernel_layer in self.kernel_convs[idx]:
kernel_feat = kernel_layer(kernel_feat)
kernel_pred = self.rtm_kernel[idx](kernel_feat)
for reg_layer in self.reg_convs[idx]:
reg_feat = reg_layer(reg_feat)
if self.with_objectness:
objectness = self.rtm_obj[idx](reg_feat)
cls_score = inverse_sigmoid(
sigmoid_geometric_mean(cls_score, objectness))
reg_dist = F.relu(self.rtm_reg[idx](reg_feat)) * stride[0]
cls_scores.append(cls_score)
bbox_preds.append(reg_dist)
kernel_preds.append(kernel_pred)
return tuple(cls_scores), tuple(bbox_preds), tuple(
kernel_preds), mask_feat
|