File size: 31,958 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from collections import OrderedDict
from copy import deepcopy

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.transformer import FFN, build_dropout
from mmengine.logging import MMLogger
from mmengine.model import BaseModule, ModuleList
from mmengine.model.weight_init import (constant_init, trunc_normal_,
                                        trunc_normal_init)
from mmengine.runner.checkpoint import CheckpointLoader
from mmengine.utils import to_2tuple

from mmdet.registry import MODELS
from ..layers import PatchEmbed, PatchMerging


class WindowMSA(BaseModule):
    """Window based multi-head self-attention (W-MSA) module with relative
    position bias.

    Args:
        embed_dims (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (tuple[int]): The height and width of the window.
        qkv_bias (bool, optional):  If True, add a learnable bias to q, k, v.
            Default: True.
        qk_scale (float | None, optional): Override default qk scale of
            head_dim ** -0.5 if set. Default: None.
        attn_drop_rate (float, optional): Dropout ratio of attention weight.
            Default: 0.0
        proj_drop_rate (float, optional): Dropout ratio of output. Default: 0.
        init_cfg (dict | None, optional): The Config for initialization.
            Default: None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 window_size,
                 qkv_bias=True,
                 qk_scale=None,
                 attn_drop_rate=0.,
                 proj_drop_rate=0.,
                 init_cfg=None):

        super().__init__()
        self.embed_dims = embed_dims
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_embed_dims = embed_dims // num_heads
        self.scale = qk_scale or head_embed_dims**-0.5
        self.init_cfg = init_cfg

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1),
                        num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        # About 2x faster than original impl
        Wh, Ww = self.window_size
        rel_index_coords = self.double_step_seq(2 * Ww - 1, Wh, 1, Ww)
        rel_position_index = rel_index_coords + rel_index_coords.T
        rel_position_index = rel_position_index.flip(1).contiguous()
        self.register_buffer('relative_position_index', rel_position_index)

        self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop_rate)
        self.proj = nn.Linear(embed_dims, embed_dims)
        self.proj_drop = nn.Dropout(proj_drop_rate)

        self.softmax = nn.Softmax(dim=-1)

    def init_weights(self):
        trunc_normal_(self.relative_position_bias_table, std=0.02)

    def forward(self, x, mask=None):
        """
        Args:

            x (tensor): input features with shape of (num_windows*B, N, C)
            mask (tensor | None, Optional): mask with shape of (num_windows,
                Wh*Ww, Wh*Ww), value should be between (-inf, 0].
        """
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
                                  C // self.num_heads).permute(2, 0, 3, 1, 4)
        # make torchscript happy (cannot use tensor as tuple)
        q, k, v = qkv[0], qkv[1], qkv[2]

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[
            self.relative_position_index.view(-1)].view(
                self.window_size[0] * self.window_size[1],
                self.window_size[0] * self.window_size[1],
                -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(
            2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B // nW, nW, self.num_heads, N,
                             N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
        attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    @staticmethod
    def double_step_seq(step1, len1, step2, len2):
        seq1 = torch.arange(0, step1 * len1, step1)
        seq2 = torch.arange(0, step2 * len2, step2)
        return (seq1[:, None] + seq2[None, :]).reshape(1, -1)


class ShiftWindowMSA(BaseModule):
    """Shifted Window Multihead Self-Attention Module.

    Args:
        embed_dims (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (int): The height and width of the window.
        shift_size (int, optional): The shift step of each window towards
            right-bottom. If zero, act as regular window-msa. Defaults to 0.
        qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
            Default: True
        qk_scale (float | None, optional): Override default qk scale of
            head_dim ** -0.5 if set. Defaults: None.
        attn_drop_rate (float, optional): Dropout ratio of attention weight.
            Defaults: 0.
        proj_drop_rate (float, optional): Dropout ratio of output.
            Defaults: 0.
        dropout_layer (dict, optional): The dropout_layer used before output.
            Defaults: dict(type='DropPath', drop_prob=0.).
        init_cfg (dict, optional): The extra config for initialization.
            Default: None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 window_size,
                 shift_size=0,
                 qkv_bias=True,
                 qk_scale=None,
                 attn_drop_rate=0,
                 proj_drop_rate=0,
                 dropout_layer=dict(type='DropPath', drop_prob=0.),
                 init_cfg=None):
        super().__init__(init_cfg)

        self.window_size = window_size
        self.shift_size = shift_size
        assert 0 <= self.shift_size < self.window_size

        self.w_msa = WindowMSA(
            embed_dims=embed_dims,
            num_heads=num_heads,
            window_size=to_2tuple(window_size),
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop_rate=attn_drop_rate,
            proj_drop_rate=proj_drop_rate,
            init_cfg=None)

        self.drop = build_dropout(dropout_layer)

    def forward(self, query, hw_shape):
        B, L, C = query.shape
        H, W = hw_shape
        assert L == H * W, 'input feature has wrong size'
        query = query.view(B, H, W, C)

        # pad feature maps to multiples of window size
        pad_r = (self.window_size - W % self.window_size) % self.window_size
        pad_b = (self.window_size - H % self.window_size) % self.window_size
        query = F.pad(query, (0, 0, 0, pad_r, 0, pad_b))
        H_pad, W_pad = query.shape[1], query.shape[2]

        # cyclic shift
        if self.shift_size > 0:
            shifted_query = torch.roll(
                query,
                shifts=(-self.shift_size, -self.shift_size),
                dims=(1, 2))

            # calculate attention mask for SW-MSA
            img_mask = torch.zeros((1, H_pad, W_pad, 1), device=query.device)
            h_slices = (slice(0, -self.window_size),
                        slice(-self.window_size,
                              -self.shift_size), slice(-self.shift_size, None))
            w_slices = (slice(0, -self.window_size),
                        slice(-self.window_size,
                              -self.shift_size), slice(-self.shift_size, None))
            cnt = 0
            for h in h_slices:
                for w in w_slices:
                    img_mask[:, h, w, :] = cnt
                    cnt += 1

            # nW, window_size, window_size, 1
            mask_windows = self.window_partition(img_mask)
            mask_windows = mask_windows.view(
                -1, self.window_size * self.window_size)
            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
            attn_mask = attn_mask.masked_fill(attn_mask != 0,
                                              float(-100.0)).masked_fill(
                                                  attn_mask == 0, float(0.0))
        else:
            shifted_query = query
            attn_mask = None

        # nW*B, window_size, window_size, C
        query_windows = self.window_partition(shifted_query)
        # nW*B, window_size*window_size, C
        query_windows = query_windows.view(-1, self.window_size**2, C)

        # W-MSA/SW-MSA (nW*B, window_size*window_size, C)
        attn_windows = self.w_msa(query_windows, mask=attn_mask)

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size,
                                         self.window_size, C)

        # B H' W' C
        shifted_x = self.window_reverse(attn_windows, H_pad, W_pad)
        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(
                shifted_x,
                shifts=(self.shift_size, self.shift_size),
                dims=(1, 2))
        else:
            x = shifted_x

        if pad_r > 0 or pad_b:
            x = x[:, :H, :W, :].contiguous()

        x = x.view(B, H * W, C)

        x = self.drop(x)
        return x

    def window_reverse(self, windows, H, W):
        """
        Args:
            windows: (num_windows*B, window_size, window_size, C)
            H (int): Height of image
            W (int): Width of image
        Returns:
            x: (B, H, W, C)
        """
        window_size = self.window_size
        B = int(windows.shape[0] / (H * W / window_size / window_size))
        x = windows.view(B, H // window_size, W // window_size, window_size,
                         window_size, -1)
        x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
        return x

    def window_partition(self, x):
        """
        Args:
            x: (B, H, W, C)
        Returns:
            windows: (num_windows*B, window_size, window_size, C)
        """
        B, H, W, C = x.shape
        window_size = self.window_size
        x = x.view(B, H // window_size, window_size, W // window_size,
                   window_size, C)
        windows = x.permute(0, 1, 3, 2, 4, 5).contiguous()
        windows = windows.view(-1, window_size, window_size, C)
        return windows


class SwinBlock(BaseModule):
    """"
    Args:
        embed_dims (int): The feature dimension.
        num_heads (int): Parallel attention heads.
        feedforward_channels (int): The hidden dimension for FFNs.
        window_size (int, optional): The local window scale. Default: 7.
        shift (bool, optional): whether to shift window or not. Default False.
        qkv_bias (bool, optional): enable bias for qkv if True. Default: True.
        qk_scale (float | None, optional): Override default qk scale of
            head_dim ** -0.5 if set. Default: None.
        drop_rate (float, optional): Dropout rate. Default: 0.
        attn_drop_rate (float, optional): Attention dropout rate. Default: 0.
        drop_path_rate (float, optional): Stochastic depth rate. Default: 0.
        act_cfg (dict, optional): The config dict of activation function.
            Default: dict(type='GELU').
        norm_cfg (dict, optional): The config dict of normalization.
            Default: dict(type='LN').
        with_cp (bool, optional): Use checkpoint or not. Using checkpoint
            will save some memory while slowing down the training speed.
            Default: False.
        init_cfg (dict | list | None, optional): The init config.
            Default: None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 feedforward_channels,
                 window_size=7,
                 shift=False,
                 qkv_bias=True,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='LN'),
                 with_cp=False,
                 init_cfg=None):

        super(SwinBlock, self).__init__()

        self.init_cfg = init_cfg
        self.with_cp = with_cp

        self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1]
        self.attn = ShiftWindowMSA(
            embed_dims=embed_dims,
            num_heads=num_heads,
            window_size=window_size,
            shift_size=window_size // 2 if shift else 0,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop_rate=attn_drop_rate,
            proj_drop_rate=drop_rate,
            dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
            init_cfg=None)

        self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1]
        self.ffn = FFN(
            embed_dims=embed_dims,
            feedforward_channels=feedforward_channels,
            num_fcs=2,
            ffn_drop=drop_rate,
            dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
            act_cfg=act_cfg,
            add_identity=True,
            init_cfg=None)

    def forward(self, x, hw_shape):

        def _inner_forward(x):
            identity = x
            x = self.norm1(x)
            x = self.attn(x, hw_shape)

            x = x + identity

            identity = x
            x = self.norm2(x)
            x = self.ffn(x, identity=identity)

            return x

        if self.with_cp and x.requires_grad:
            x = cp.checkpoint(_inner_forward, x)
        else:
            x = _inner_forward(x)

        return x


class SwinBlockSequence(BaseModule):
    """Implements one stage in Swin Transformer.

    Args:
        embed_dims (int): The feature dimension.
        num_heads (int): Parallel attention heads.
        feedforward_channels (int): The hidden dimension for FFNs.
        depth (int): The number of blocks in this stage.
        window_size (int, optional): The local window scale. Default: 7.
        qkv_bias (bool, optional): enable bias for qkv if True. Default: True.
        qk_scale (float | None, optional): Override default qk scale of
            head_dim ** -0.5 if set. Default: None.
        drop_rate (float, optional): Dropout rate. Default: 0.
        attn_drop_rate (float, optional): Attention dropout rate. Default: 0.
        drop_path_rate (float | list[float], optional): Stochastic depth
            rate. Default: 0.
        downsample (BaseModule | None, optional): The downsample operation
            module. Default: None.
        act_cfg (dict, optional): The config dict of activation function.
            Default: dict(type='GELU').
        norm_cfg (dict, optional): The config dict of normalization.
            Default: dict(type='LN').
        with_cp (bool, optional): Use checkpoint or not. Using checkpoint
            will save some memory while slowing down the training speed.
            Default: False.
        init_cfg (dict | list | None, optional): The init config.
            Default: None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 feedforward_channels,
                 depth,
                 window_size=7,
                 qkv_bias=True,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 downsample=None,
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='LN'),
                 with_cp=False,
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)

        if isinstance(drop_path_rate, list):
            drop_path_rates = drop_path_rate
            assert len(drop_path_rates) == depth
        else:
            drop_path_rates = [deepcopy(drop_path_rate) for _ in range(depth)]

        self.blocks = ModuleList()
        for i in range(depth):
            block = SwinBlock(
                embed_dims=embed_dims,
                num_heads=num_heads,
                feedforward_channels=feedforward_channels,
                window_size=window_size,
                shift=False if i % 2 == 0 else True,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop_rate=drop_rate,
                attn_drop_rate=attn_drop_rate,
                drop_path_rate=drop_path_rates[i],
                act_cfg=act_cfg,
                norm_cfg=norm_cfg,
                with_cp=with_cp,
                init_cfg=None)
            self.blocks.append(block)

        self.downsample = downsample

    def forward(self, x, hw_shape):
        for block in self.blocks:
            x = block(x, hw_shape)

        if self.downsample:
            x_down, down_hw_shape = self.downsample(x, hw_shape)
            return x_down, down_hw_shape, x, hw_shape
        else:
            return x, hw_shape, x, hw_shape


@MODELS.register_module()
class SwinTransformer(BaseModule):
    """ Swin Transformer
    A PyTorch implement of : `Swin Transformer:
    Hierarchical Vision Transformer using Shifted Windows`  -
        https://arxiv.org/abs/2103.14030

    Inspiration from
    https://github.com/microsoft/Swin-Transformer

    Args:
        pretrain_img_size (int | tuple[int]): The size of input image when
            pretrain. Defaults: 224.
        in_channels (int): The num of input channels.
            Defaults: 3.
        embed_dims (int): The feature dimension. Default: 96.
        patch_size (int | tuple[int]): Patch size. Default: 4.
        window_size (int): Window size. Default: 7.
        mlp_ratio (int): Ratio of mlp hidden dim to embedding dim.
            Default: 4.
        depths (tuple[int]): Depths of each Swin Transformer stage.
            Default: (2, 2, 6, 2).
        num_heads (tuple[int]): Parallel attention heads of each Swin
            Transformer stage. Default: (3, 6, 12, 24).
        strides (tuple[int]): The patch merging or patch embedding stride of
            each Swin Transformer stage. (In swin, we set kernel size equal to
            stride.) Default: (4, 2, 2, 2).
        out_indices (tuple[int]): Output from which stages.
            Default: (0, 1, 2, 3).
        qkv_bias (bool, optional): If True, add a learnable bias to query, key,
            value. Default: True
        qk_scale (float | None, optional): Override default qk scale of
            head_dim ** -0.5 if set. Default: None.
        patch_norm (bool): If add a norm layer for patch embed and patch
            merging. Default: True.
        drop_rate (float): Dropout rate. Defaults: 0.
        attn_drop_rate (float): Attention dropout rate. Default: 0.
        drop_path_rate (float): Stochastic depth rate. Defaults: 0.1.
        use_abs_pos_embed (bool): If True, add absolute position embedding to
            the patch embedding. Defaults: False.
        act_cfg (dict): Config dict for activation layer.
            Default: dict(type='GELU').
        norm_cfg (dict): Config dict for normalization layer at
            output of backone. Defaults: dict(type='LN').
        with_cp (bool, optional): Use checkpoint or not. Using checkpoint
            will save some memory while slowing down the training speed.
            Default: False.
        pretrained (str, optional): model pretrained path. Default: None.
        convert_weights (bool): The flag indicates whether the
            pre-trained model is from the original repo. We may need
            to convert some keys to make it compatible.
            Default: False.
        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
            Default: -1 (-1 means not freezing any parameters).
        init_cfg (dict, optional): The Config for initialization.
            Defaults to None.
    """

    def __init__(self,
                 pretrain_img_size=224,
                 in_channels=3,
                 embed_dims=96,
                 patch_size=4,
                 window_size=7,
                 mlp_ratio=4,
                 depths=(2, 2, 6, 2),
                 num_heads=(3, 6, 12, 24),
                 strides=(4, 2, 2, 2),
                 out_indices=(0, 1, 2, 3),
                 qkv_bias=True,
                 qk_scale=None,
                 patch_norm=True,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.1,
                 use_abs_pos_embed=False,
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='LN'),
                 with_cp=False,
                 pretrained=None,
                 convert_weights=False,
                 frozen_stages=-1,
                 init_cfg=None):
        self.convert_weights = convert_weights
        self.frozen_stages = frozen_stages
        if isinstance(pretrain_img_size, int):
            pretrain_img_size = to_2tuple(pretrain_img_size)
        elif isinstance(pretrain_img_size, tuple):
            if len(pretrain_img_size) == 1:
                pretrain_img_size = to_2tuple(pretrain_img_size[0])
            assert len(pretrain_img_size) == 2, \
                f'The size of image should have length 1 or 2, ' \
                f'but got {len(pretrain_img_size)}'

        assert not (init_cfg and pretrained), \
            'init_cfg and pretrained cannot be specified at the same time'
        if isinstance(pretrained, str):
            warnings.warn('DeprecationWarning: pretrained is deprecated, '
                          'please use "init_cfg" instead')
            self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
        elif pretrained is None:
            self.init_cfg = init_cfg
        else:
            raise TypeError('pretrained must be a str or None')

        super(SwinTransformer, self).__init__(init_cfg=init_cfg)

        num_layers = len(depths)
        self.out_indices = out_indices
        self.use_abs_pos_embed = use_abs_pos_embed

        assert strides[0] == patch_size, 'Use non-overlapping patch embed.'

        self.patch_embed = PatchEmbed(
            in_channels=in_channels,
            embed_dims=embed_dims,
            conv_type='Conv2d',
            kernel_size=patch_size,
            stride=strides[0],
            norm_cfg=norm_cfg if patch_norm else None,
            init_cfg=None)

        if self.use_abs_pos_embed:
            patch_row = pretrain_img_size[0] // patch_size
            patch_col = pretrain_img_size[1] // patch_size
            num_patches = patch_row * patch_col
            self.absolute_pos_embed = nn.Parameter(
                torch.zeros((1, num_patches, embed_dims)))

        self.drop_after_pos = nn.Dropout(p=drop_rate)

        # set stochastic depth decay rule
        total_depth = sum(depths)
        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, total_depth)
        ]

        self.stages = ModuleList()
        in_channels = embed_dims
        for i in range(num_layers):
            if i < num_layers - 1:
                downsample = PatchMerging(
                    in_channels=in_channels,
                    out_channels=2 * in_channels,
                    stride=strides[i + 1],
                    norm_cfg=norm_cfg if patch_norm else None,
                    init_cfg=None)
            else:
                downsample = None

            stage = SwinBlockSequence(
                embed_dims=in_channels,
                num_heads=num_heads[i],
                feedforward_channels=mlp_ratio * in_channels,
                depth=depths[i],
                window_size=window_size,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop_rate=drop_rate,
                attn_drop_rate=attn_drop_rate,
                drop_path_rate=dpr[sum(depths[:i]):sum(depths[:i + 1])],
                downsample=downsample,
                act_cfg=act_cfg,
                norm_cfg=norm_cfg,
                with_cp=with_cp,
                init_cfg=None)
            self.stages.append(stage)
            if downsample:
                in_channels = downsample.out_channels

        self.num_features = [int(embed_dims * 2**i) for i in range(num_layers)]
        # Add a norm layer for each output
        for i in out_indices:
            layer = build_norm_layer(norm_cfg, self.num_features[i])[1]
            layer_name = f'norm{i}'
            self.add_module(layer_name, layer)

    def train(self, mode=True):
        """Convert the model into training mode while keep layers freezed."""
        super(SwinTransformer, self).train(mode)
        self._freeze_stages()

    def _freeze_stages(self):
        if self.frozen_stages >= 0:
            self.patch_embed.eval()
            for param in self.patch_embed.parameters():
                param.requires_grad = False
            if self.use_abs_pos_embed:
                self.absolute_pos_embed.requires_grad = False
            self.drop_after_pos.eval()

        for i in range(1, self.frozen_stages + 1):

            if (i - 1) in self.out_indices:
                norm_layer = getattr(self, f'norm{i-1}')
                norm_layer.eval()
                for param in norm_layer.parameters():
                    param.requires_grad = False

            m = self.stages[i - 1]
            m.eval()
            for param in m.parameters():
                param.requires_grad = False

    def init_weights(self):
        logger = MMLogger.get_current_instance()
        if self.init_cfg is None:
            logger.warn(f'No pre-trained weights for '
                        f'{self.__class__.__name__}, '
                        f'training start from scratch')
            if self.use_abs_pos_embed:
                trunc_normal_(self.absolute_pos_embed, std=0.02)
            for m in self.modules():
                if isinstance(m, nn.Linear):
                    trunc_normal_init(m, std=.02, bias=0.)
                elif isinstance(m, nn.LayerNorm):
                    constant_init(m, 1.0)
        else:
            assert 'checkpoint' in self.init_cfg, f'Only support ' \
                                                  f'specify `Pretrained` in ' \
                                                  f'`init_cfg` in ' \
                                                  f'{self.__class__.__name__} '
            ckpt = CheckpointLoader.load_checkpoint(
                self.init_cfg.checkpoint, logger=logger, map_location='cpu')
            if 'state_dict' in ckpt:
                _state_dict = ckpt['state_dict']
            elif 'model' in ckpt:
                _state_dict = ckpt['model']
            else:
                _state_dict = ckpt
            if self.convert_weights:
                # supported loading weight from original repo,
                _state_dict = swin_converter(_state_dict)

            state_dict = OrderedDict()
            for k, v in _state_dict.items():
                if k.startswith('backbone.'):
                    state_dict[k[9:]] = v

            # strip prefix of state_dict
            if list(state_dict.keys())[0].startswith('module.'):
                state_dict = {k[7:]: v for k, v in state_dict.items()}

            # reshape absolute position embedding
            if state_dict.get('absolute_pos_embed') is not None:
                absolute_pos_embed = state_dict['absolute_pos_embed']
                N1, L, C1 = absolute_pos_embed.size()
                N2, C2, H, W = self.absolute_pos_embed.size()
                if N1 != N2 or C1 != C2 or L != H * W:
                    logger.warning('Error in loading absolute_pos_embed, pass')
                else:
                    state_dict['absolute_pos_embed'] = absolute_pos_embed.view(
                        N2, H, W, C2).permute(0, 3, 1, 2).contiguous()

            # interpolate position bias table if needed
            relative_position_bias_table_keys = [
                k for k in state_dict.keys()
                if 'relative_position_bias_table' in k
            ]
            for table_key in relative_position_bias_table_keys:
                table_pretrained = state_dict[table_key]
                table_current = self.state_dict()[table_key]
                L1, nH1 = table_pretrained.size()
                L2, nH2 = table_current.size()
                if nH1 != nH2:
                    logger.warning(f'Error in loading {table_key}, pass')
                elif L1 != L2:
                    S1 = int(L1**0.5)
                    S2 = int(L2**0.5)
                    table_pretrained_resized = F.interpolate(
                        table_pretrained.permute(1, 0).reshape(1, nH1, S1, S1),
                        size=(S2, S2),
                        mode='bicubic')
                    state_dict[table_key] = table_pretrained_resized.view(
                        nH2, L2).permute(1, 0).contiguous()

            # load state_dict
            self.load_state_dict(state_dict, False)

    def forward(self, x):
        x, hw_shape = self.patch_embed(x)

        if self.use_abs_pos_embed:
            x = x + self.absolute_pos_embed
        x = self.drop_after_pos(x)

        outs = []
        for i, stage in enumerate(self.stages):
            x, hw_shape, out, out_hw_shape = stage(x, hw_shape)
            if i in self.out_indices:
                norm_layer = getattr(self, f'norm{i}')
                out = norm_layer(out)
                out = out.view(-1, *out_hw_shape,
                               self.num_features[i]).permute(0, 3, 1,
                                                             2).contiguous()
                outs.append(out)

        return outs


def swin_converter(ckpt):

    new_ckpt = OrderedDict()

    def correct_unfold_reduction_order(x):
        out_channel, in_channel = x.shape
        x = x.reshape(out_channel, 4, in_channel // 4)
        x = x[:, [0, 2, 1, 3], :].transpose(1,
                                            2).reshape(out_channel, in_channel)
        return x

    def correct_unfold_norm_order(x):
        in_channel = x.shape[0]
        x = x.reshape(4, in_channel // 4)
        x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel)
        return x

    for k, v in ckpt.items():
        if k.startswith('head'):
            continue
        elif k.startswith('layers'):
            new_v = v
            if 'attn.' in k:
                new_k = k.replace('attn.', 'attn.w_msa.')
            elif 'mlp.' in k:
                if 'mlp.fc1.' in k:
                    new_k = k.replace('mlp.fc1.', 'ffn.layers.0.0.')
                elif 'mlp.fc2.' in k:
                    new_k = k.replace('mlp.fc2.', 'ffn.layers.1.')
                else:
                    new_k = k.replace('mlp.', 'ffn.')
            elif 'downsample' in k:
                new_k = k
                if 'reduction.' in k:
                    new_v = correct_unfold_reduction_order(v)
                elif 'norm.' in k:
                    new_v = correct_unfold_norm_order(v)
            else:
                new_k = k
            new_k = new_k.replace('layers', 'stages', 1)
        elif k.startswith('patch_embed'):
            new_v = v
            if 'proj' in k:
                new_k = k.replace('proj', 'projection')
            else:
                new_k = k
        else:
            new_v = v
            new_k = k

        new_ckpt['backbone.' + new_k] = new_v

    return new_ckpt