File size: 7,621 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Copyright (c) OpenMMLab. All rights reserved.
import warnings

import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
from torch.nn.modules.batchnorm import _BatchNorm

from mmdet.registry import MODELS
from ..layers import InvertedResidual
from ..utils import make_divisible


@MODELS.register_module()
class MobileNetV2(BaseModule):
    """MobileNetV2 backbone.

    Args:
        widen_factor (float): Width multiplier, multiply number of
            channels in each layer by this amount. Default: 1.0.
        out_indices (Sequence[int], optional): Output from which stages.
            Default: (1, 2, 4, 7).
        frozen_stages (int): Stages to be frozen (all param fixed).
            Default: -1, which means not freezing any parameters.
        conv_cfg (dict, optional): Config dict for convolution layer.
            Default: None, which means using conv2d.
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='BN').
        act_cfg (dict): Config dict for activation layer.
            Default: dict(type='ReLU6').
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Default: False.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Default: False.
        pretrained (str, optional): model pretrained path. Default: None
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None
    """

    # Parameters to build layers. 4 parameters are needed to construct a
    # layer, from left to right: expand_ratio, channel, num_blocks, stride.
    arch_settings = [[1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2],
                     [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2],
                     [6, 320, 1, 1]]

    def __init__(self,
                 widen_factor=1.,
                 out_indices=(1, 2, 4, 7),
                 frozen_stages=-1,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 act_cfg=dict(type='ReLU6'),
                 norm_eval=False,
                 with_cp=False,
                 pretrained=None,
                 init_cfg=None):
        super(MobileNetV2, self).__init__(init_cfg)

        self.pretrained = pretrained
        assert not (init_cfg and pretrained), \
            'init_cfg and pretrained cannot be specified at the same time'
        if isinstance(pretrained, str):
            warnings.warn('DeprecationWarning: pretrained is deprecated, '
                          'please use "init_cfg" instead')
            self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
        elif pretrained is None:
            if init_cfg is None:
                self.init_cfg = [
                    dict(type='Kaiming', layer='Conv2d'),
                    dict(
                        type='Constant',
                        val=1,
                        layer=['_BatchNorm', 'GroupNorm'])
                ]
        else:
            raise TypeError('pretrained must be a str or None')

        self.widen_factor = widen_factor
        self.out_indices = out_indices
        if not set(out_indices).issubset(set(range(0, 8))):
            raise ValueError('out_indices must be a subset of range'
                             f'(0, 8). But received {out_indices}')

        if frozen_stages not in range(-1, 8):
            raise ValueError('frozen_stages must be in range(-1, 8). '
                             f'But received {frozen_stages}')
        self.out_indices = out_indices
        self.frozen_stages = frozen_stages
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.norm_eval = norm_eval
        self.with_cp = with_cp

        self.in_channels = make_divisible(32 * widen_factor, 8)

        self.conv1 = ConvModule(
            in_channels=3,
            out_channels=self.in_channels,
            kernel_size=3,
            stride=2,
            padding=1,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)

        self.layers = []

        for i, layer_cfg in enumerate(self.arch_settings):
            expand_ratio, channel, num_blocks, stride = layer_cfg
            out_channels = make_divisible(channel * widen_factor, 8)
            inverted_res_layer = self.make_layer(
                out_channels=out_channels,
                num_blocks=num_blocks,
                stride=stride,
                expand_ratio=expand_ratio)
            layer_name = f'layer{i + 1}'
            self.add_module(layer_name, inverted_res_layer)
            self.layers.append(layer_name)

        if widen_factor > 1.0:
            self.out_channel = int(1280 * widen_factor)
        else:
            self.out_channel = 1280

        layer = ConvModule(
            in_channels=self.in_channels,
            out_channels=self.out_channel,
            kernel_size=1,
            stride=1,
            padding=0,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)
        self.add_module('conv2', layer)
        self.layers.append('conv2')

    def make_layer(self, out_channels, num_blocks, stride, expand_ratio):
        """Stack InvertedResidual blocks to build a layer for MobileNetV2.

        Args:
            out_channels (int): out_channels of block.
            num_blocks (int): number of blocks.
            stride (int): stride of the first block. Default: 1
            expand_ratio (int): Expand the number of channels of the
                hidden layer in InvertedResidual by this ratio. Default: 6.
        """
        layers = []
        for i in range(num_blocks):
            if i >= 1:
                stride = 1
            layers.append(
                InvertedResidual(
                    self.in_channels,
                    out_channels,
                    mid_channels=int(round(self.in_channels * expand_ratio)),
                    stride=stride,
                    with_expand_conv=expand_ratio != 1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg,
                    act_cfg=self.act_cfg,
                    with_cp=self.with_cp))
            self.in_channels = out_channels

        return nn.Sequential(*layers)

    def _freeze_stages(self):
        if self.frozen_stages >= 0:
            for param in self.conv1.parameters():
                param.requires_grad = False
        for i in range(1, self.frozen_stages + 1):
            layer = getattr(self, f'layer{i}')
            layer.eval()
            for param in layer.parameters():
                param.requires_grad = False

    def forward(self, x):
        """Forward function."""
        x = self.conv1(x)
        outs = []
        for i, layer_name in enumerate(self.layers):
            layer = getattr(self, layer_name)
            x = layer(x)
            if i in self.out_indices:
                outs.append(x)
        return tuple(outs)

    def train(self, mode=True):
        """Convert the model into training mode while keep normalization layer
        frozen."""
        super(MobileNetV2, self).train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            for m in self.modules():
                # trick: eval have effect on BatchNorm only
                if isinstance(m, _BatchNorm):
                    m.eval()