File size: 14,963 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# Copyright (c) OpenMMLab. All rights reserved.
import itertools
import os.path as osp
import tempfile
import warnings
from collections import OrderedDict
from typing import Dict, List, Optional, Sequence, Union

import numpy as np
from mmengine.logging import MMLogger
from terminaltables import AsciiTable

from mmdet.registry import METRICS
from mmdet.structures.mask import encode_mask_results
from ..functional import eval_recalls
from .coco_metric import CocoMetric

try:
    import lvis
    if getattr(lvis, '__version__', '0') >= '10.5.3':
        warnings.warn(
            'mmlvis is deprecated, please install official lvis-api by "pip install git+https://github.com/lvis-dataset/lvis-api.git"',  # noqa: E501
            UserWarning)
    from lvis import LVIS, LVISEval, LVISResults
except ImportError:
    lvis = None
    LVISEval = None
    LVISResults = None


@METRICS.register_module()
class LVISMetric(CocoMetric):
    """LVIS evaluation metric.

    Args:
        ann_file (str, optional): Path to the coco format annotation file.
            If not specified, ground truth annotations from the dataset will
            be converted to coco format. Defaults to None.
        metric (str | List[str]): Metrics to be evaluated. Valid metrics
            include 'bbox', 'segm', 'proposal', and 'proposal_fast'.
            Defaults to 'bbox'.
        classwise (bool): Whether to evaluate the metric class-wise.
            Defaults to False.
        proposal_nums (Sequence[int]): Numbers of proposals to be evaluated.
            Defaults to (100, 300, 1000).
        iou_thrs (float | List[float], optional): IoU threshold to compute AP
            and AR. If not specified, IoUs from 0.5 to 0.95 will be used.
            Defaults to None.
        metric_items (List[str], optional): Metric result names to be
            recorded in the evaluation result. Defaults to None.
        format_only (bool): Format the output results without perform
            evaluation. It is useful when you want to format the result
            to a specific format and submit it to the test server.
            Defaults to False.
        outfile_prefix (str, optional): The prefix of json files. It includes
            the file path and the prefix of filename, e.g., "a/b/prefix".
            If not specified, a temp file will be created. Defaults to None.
        collect_device (str): Device name used for collecting results from
            different ranks during distributed training. Must be 'cpu' or
            'gpu'. Defaults to 'cpu'.
        prefix (str, optional): The prefix that will be added in the metric
            names to disambiguate homonymous metrics of different evaluators.
            If prefix is not provided in the argument, self.default_prefix
            will be used instead. Defaults to None.
    """

    default_prefix: Optional[str] = 'lvis'

    def __init__(self,
                 ann_file: Optional[str] = None,
                 metric: Union[str, List[str]] = 'bbox',
                 classwise: bool = False,
                 proposal_nums: Sequence[int] = (100, 300, 1000),
                 iou_thrs: Optional[Union[float, Sequence[float]]] = None,
                 metric_items: Optional[Sequence[str]] = None,
                 format_only: bool = False,
                 outfile_prefix: Optional[str] = None,
                 collect_device: str = 'cpu',
                 prefix: Optional[str] = None) -> None:
        if lvis is None:
            raise RuntimeError(
                'Package lvis is not installed. Please run "pip install '
                'git+https://github.com/lvis-dataset/lvis-api.git".')
        super().__init__(collect_device=collect_device, prefix=prefix)
        # coco evaluation metrics
        self.metrics = metric if isinstance(metric, list) else [metric]
        allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast']
        for metric in self.metrics:
            if metric not in allowed_metrics:
                raise KeyError(
                    "metric should be one of 'bbox', 'segm', 'proposal', "
                    f"'proposal_fast', but got {metric}.")

        # do class wise evaluation, default False
        self.classwise = classwise

        # proposal_nums used to compute recall or precision.
        self.proposal_nums = list(proposal_nums)

        # iou_thrs used to compute recall or precision.
        if iou_thrs is None:
            iou_thrs = np.linspace(
                .5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True)
        self.iou_thrs = iou_thrs
        self.metric_items = metric_items
        self.format_only = format_only
        if self.format_only:
            assert outfile_prefix is not None, 'outfile_prefix must be not'
            'None when format_only is True, otherwise the result files will'
            'be saved to a temp directory which will be cleaned up at the end.'

        self.outfile_prefix = outfile_prefix

        # if ann_file is not specified,
        # initialize lvis api with the converted dataset
        self._lvis_api = LVIS(ann_file) if ann_file else None

        # handle dataset lazy init
        self.cat_ids = None
        self.img_ids = None

    def fast_eval_recall(self,
                         results: List[dict],
                         proposal_nums: Sequence[int],
                         iou_thrs: Sequence[float],
                         logger: Optional[MMLogger] = None) -> np.ndarray:
        """Evaluate proposal recall with LVIS's fast_eval_recall.

        Args:
            results (List[dict]): Results of the dataset.
            proposal_nums (Sequence[int]): Proposal numbers used for
                evaluation.
            iou_thrs (Sequence[float]): IoU thresholds used for evaluation.
            logger (MMLogger, optional): Logger used for logging the recall
                summary.
        Returns:
            np.ndarray: Averaged recall results.
        """
        gt_bboxes = []
        pred_bboxes = [result['bboxes'] for result in results]
        for i in range(len(self.img_ids)):
            ann_ids = self._lvis_api.get_ann_ids(img_ids=[self.img_ids[i]])
            ann_info = self._lvis_api.load_anns(ann_ids)
            if len(ann_info) == 0:
                gt_bboxes.append(np.zeros((0, 4)))
                continue
            bboxes = []
            for ann in ann_info:
                x1, y1, w, h = ann['bbox']
                bboxes.append([x1, y1, x1 + w, y1 + h])
            bboxes = np.array(bboxes, dtype=np.float32)
            if bboxes.shape[0] == 0:
                bboxes = np.zeros((0, 4))
            gt_bboxes.append(bboxes)

        recalls = eval_recalls(
            gt_bboxes, pred_bboxes, proposal_nums, iou_thrs, logger=logger)
        ar = recalls.mean(axis=1)
        return ar

    # TODO: data_batch is no longer needed, consider adjusting the
    #  parameter position
    def process(self, data_batch: dict, data_samples: Sequence[dict]) -> None:
        """Process one batch of data samples and predictions. The processed
        results should be stored in ``self.results``, which will be used to
        compute the metrics when all batches have been processed.

        Args:
            data_batch (dict): A batch of data from the dataloader.
            data_samples (Sequence[dict]): A batch of data samples that
                contain annotations and predictions.
        """
        for data_sample in data_samples:
            result = dict()
            pred = data_sample['pred_instances']
            result['img_id'] = data_sample['img_id']
            result['bboxes'] = pred['bboxes'].cpu().numpy()
            result['scores'] = pred['scores'].cpu().numpy()
            result['labels'] = pred['labels'].cpu().numpy()
            # encode mask to RLE
            if 'masks' in pred:
                result['masks'] = encode_mask_results(
                    pred['masks'].detach().cpu().numpy())
            # some detectors use different scores for bbox and mask
            if 'mask_scores' in pred:
                result['mask_scores'] = pred['mask_scores'].cpu().numpy()

            # parse gt
            gt = dict()
            gt['width'] = data_sample['ori_shape'][1]
            gt['height'] = data_sample['ori_shape'][0]
            gt['img_id'] = data_sample['img_id']
            if self._lvis_api is None:
                # TODO: Need to refactor to support LoadAnnotations
                assert 'instances' in data_sample, \
                    'ground truth is required for evaluation when ' \
                    '`ann_file` is not provided'
                gt['anns'] = data_sample['instances']
            # add converted result to the results list
            self.results.append((gt, result))

    def compute_metrics(self, results: list) -> Dict[str, float]:
        """Compute the metrics from processed results.

        Args:
            results (list): The processed results of each batch.

        Returns:
            Dict[str, float]: The computed metrics. The keys are the names of
            the metrics, and the values are corresponding results.
        """
        logger: MMLogger = MMLogger.get_current_instance()

        # split gt and prediction list
        gts, preds = zip(*results)

        tmp_dir = None
        if self.outfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            outfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            outfile_prefix = self.outfile_prefix

        if self._lvis_api is None:
            # use converted gt json file to initialize coco api
            logger.info('Converting ground truth to coco format...')
            coco_json_path = self.gt_to_coco_json(
                gt_dicts=gts, outfile_prefix=outfile_prefix)
            self._lvis_api = LVIS(coco_json_path)

        # handle lazy init
        if self.cat_ids is None:
            self.cat_ids = self._lvis_api.get_cat_ids()
        if self.img_ids is None:
            self.img_ids = self._lvis_api.get_img_ids()

        # convert predictions to coco format and dump to json file
        result_files = self.results2json(preds, outfile_prefix)

        eval_results = OrderedDict()
        if self.format_only:
            logger.info('results are saved in '
                        f'{osp.dirname(outfile_prefix)}')
            return eval_results

        lvis_gt = self._lvis_api

        for metric in self.metrics:
            logger.info(f'Evaluating {metric}...')

            # TODO: May refactor fast_eval_recall to an independent metric?
            # fast eval recall
            if metric == 'proposal_fast':
                ar = self.fast_eval_recall(
                    preds, self.proposal_nums, self.iou_thrs, logger=logger)
                log_msg = []
                for i, num in enumerate(self.proposal_nums):
                    eval_results[f'AR@{num}'] = ar[i]
                    log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}')
                log_msg = ''.join(log_msg)
                logger.info(log_msg)
                continue

            try:
                lvis_dt = LVISResults(lvis_gt, result_files[metric])
            except IndexError:
                logger.info(
                    'The testing results of the whole dataset is empty.')
                break

            iou_type = 'bbox' if metric == 'proposal' else metric
            lvis_eval = LVISEval(lvis_gt, lvis_dt, iou_type)
            lvis_eval.params.imgIds = self.img_ids
            metric_items = self.metric_items
            if metric == 'proposal':
                lvis_eval.params.useCats = 0
                lvis_eval.params.maxDets = list(self.proposal_nums)
                lvis_eval.evaluate()
                lvis_eval.accumulate()
                lvis_eval.summarize()
                if metric_items is None:
                    metric_items = ['AR@300', 'ARs@300', 'ARm@300', 'ARl@300']
                for k, v in lvis_eval.get_results().items():
                    if k in metric_items:
                        val = float('{:.3f}'.format(float(v)))
                        eval_results[k] = val

            else:
                lvis_eval.evaluate()
                lvis_eval.accumulate()
                lvis_eval.summarize()
                lvis_results = lvis_eval.get_results()
                if self.classwise:  # Compute per-category AP
                    # Compute per-category AP
                    # from https://github.com/facebookresearch/detectron2/
                    precisions = lvis_eval.eval['precision']
                    # precision: (iou, recall, cls, area range, max dets)
                    assert len(self.cat_ids) == precisions.shape[2]

                    results_per_category = []
                    for idx, catId in enumerate(self.cat_ids):
                        # area range index 0: all area ranges
                        # max dets index -1: typically 100 per image
                        # the dimensions of precisions are
                        # [num_thrs, num_recalls, num_cats, num_area_rngs]
                        nm = self._lvis_api.load_cats([catId])[0]
                        precision = precisions[:, :, idx, 0]
                        precision = precision[precision > -1]
                        if precision.size:
                            ap = np.mean(precision)
                        else:
                            ap = float('nan')
                        results_per_category.append(
                            (f'{nm["name"]}', f'{float(ap):0.3f}'))
                        eval_results[f'{nm["name"]}_precision'] = round(ap, 3)

                    num_columns = min(6, len(results_per_category) * 2)
                    results_flatten = list(
                        itertools.chain(*results_per_category))
                    headers = ['category', 'AP'] * (num_columns // 2)
                    results_2d = itertools.zip_longest(*[
                        results_flatten[i::num_columns]
                        for i in range(num_columns)
                    ])
                    table_data = [headers]
                    table_data += [result for result in results_2d]
                    table = AsciiTable(table_data)
                    logger.info('\n' + table.table)

                if metric_items is None:
                    metric_items = [
                        'AP', 'AP50', 'AP75', 'APs', 'APm', 'APl', 'APr',
                        'APc', 'APf'
                    ]

                for k, v in lvis_results.items():
                    if k in metric_items:
                        key = '{}_{}'.format(metric, k)
                        val = float('{:.3f}'.format(float(v)))
                        eval_results[key] = val

            lvis_eval.print_results()
        if tmp_dir is not None:
            tmp_dir.cleanup()
        return eval_results