Spaces:
Runtime error
Runtime error
File size: 32,238 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import json
import os.path as osp
import tempfile
from collections import OrderedDict
from multiprocessing import Process, Queue
from typing import Dict, List, Optional, Sequence, Union
import numpy as np
from mmengine.evaluator import BaseMetric
from mmengine.fileio import FileClient, dump, load
from mmengine.logging import MMLogger
from scipy.sparse import csr_matrix
from scipy.sparse.csgraph import maximum_bipartite_matching
from mmdet.evaluation.functional.bbox_overlaps import bbox_overlaps
from mmdet.registry import METRICS
PERSON_CLASSES = ['background', 'person']
@METRICS.register_module()
class CrowdHumanMetric(BaseMetric):
"""CrowdHuman evaluation metric.
Evaluate Average Precision (AP), Miss Rate (MR) and Jaccard Index (JI)
for detection tasks.
Args:
ann_file (str): Path to the annotation file.
metric (str | List[str]): Metrics to be evaluated. Valid metrics
include 'AP', 'MR' and 'JI'. Defaults to 'AP'.
format_only (bool): Format the output results without perform
evaluation. It is useful when you want to format the result
to a specific format and submit it to the test server.
Defaults to False.
outfile_prefix (str, optional): The prefix of json files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Defaults to None.
file_client_args (dict): Arguments to instantiate a FileClient.
See :class:`mmengine.fileio.FileClient` for details.
Defaults to ``dict(backend='disk')``.
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be 'cpu' or
'gpu'. Defaults to 'cpu'.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Defaults to None.
eval_mode (int): Select the mode of evaluate. Valid mode include
0(just body box), 1(just head box) and 2(both of them).
Defaults to 0.
iou_thres (float): IoU threshold. Defaults to 0.5.
compare_matching_method (str, optional): Matching method to compare
the detection results with the ground_truth when compute 'AP'
and 'MR'.Valid method include VOC and None(CALTECH). Default to
None.
mr_ref (str): Different parameter selection to calculate MR. Valid
ref include CALTECH_-2 and CALTECH_-4. Defaults to CALTECH_-2.
num_ji_process (int): The number of processes to evaluation JI.
Defaults to 10.
"""
default_prefix: Optional[str] = 'crowd_human'
def __init__(self,
ann_file: str,
metric: Union[str, List[str]] = ['AP', 'MR', 'JI'],
format_only: bool = False,
outfile_prefix: Optional[str] = None,
file_client_args: dict = dict(backend='disk'),
collect_device: str = 'cpu',
prefix: Optional[str] = None,
eval_mode: int = 0,
iou_thres: float = 0.5,
compare_matching_method: Optional[str] = None,
mr_ref: str = 'CALTECH_-2',
num_ji_process: int = 10) -> None:
super().__init__(collect_device=collect_device, prefix=prefix)
self.ann_file = ann_file
# crowdhuman evaluation metrics
self.metrics = metric if isinstance(metric, list) else [metric]
allowed_metrics = ['MR', 'AP', 'JI']
for metric in self.metrics:
if metric not in allowed_metrics:
raise KeyError(f"metric should be one of 'MR', 'AP', 'JI',"
f'but got {metric}.')
self.format_only = format_only
if self.format_only:
assert outfile_prefix is not None, 'outfile_prefix must be not'
'None when format_only is True, otherwise the result files will'
'be saved to a temp directory which will be cleaned up at the end.'
self.outfile_prefix = outfile_prefix
self.file_client_args = file_client_args
self.file_client = FileClient(**file_client_args)
assert eval_mode in [0, 1, 2], \
"Unknown eval mode. mr_ref should be one of '0', '1', '2'."
assert compare_matching_method is None or \
compare_matching_method == 'VOC', \
'The alternative compare_matching_method is VOC.' \
'This parameter defaults to CALTECH(None)'
assert mr_ref == 'CALTECH_-2' or mr_ref == 'CALTECH_-4', \
"mr_ref should be one of 'CALTECH_-2', 'CALTECH_-4'."
self.eval_mode = eval_mode
self.iou_thres = iou_thres
self.compare_matching_method = compare_matching_method
self.mr_ref = mr_ref
self.num_ji_process = num_ji_process
@staticmethod
def results2json(results: Sequence[dict], outfile_prefix: str) -> str:
"""Dump the detection results to a json file."""
result_file_path = f'{outfile_prefix}.json'
bbox_json_results = []
for i, result in enumerate(results):
ann, pred = result
dump_dict = dict()
dump_dict['ID'] = ann['ID']
dump_dict['width'] = ann['width']
dump_dict['height'] = ann['height']
dtboxes = []
bboxes = pred.tolist()
for _, single_bbox in enumerate(bboxes):
temp_dict = dict()
x1, y1, x2, y2, score = single_bbox
temp_dict['box'] = [x1, y1, x2 - x1, y2 - y1]
temp_dict['score'] = score
temp_dict['tag'] = 1
dtboxes.append(temp_dict)
dump_dict['dtboxes'] = dtboxes
bbox_json_results.append(dump_dict)
dump(bbox_json_results, result_file_path)
return result_file_path
def process(self, data_batch: Sequence[dict],
data_samples: Sequence[dict]) -> None:
"""Process one batch of data samples and predictions. The processed
results should be stored in ``self.results``, which will be used to
compute the metrics when all batches have been processed.
Args:
data_batch (dict): A batch of data from the dataloader.
data_samples (Sequence[dict]): A batch of data samples that
contain annotations and predictions.
"""
for data_sample in data_samples:
ann = dict()
ann['ID'] = data_sample['img_id']
ann['width'] = data_sample['ori_shape'][1]
ann['height'] = data_sample['ori_shape'][0]
pred_bboxes = data_sample['pred_instances']['bboxes'].cpu().numpy()
pred_scores = data_sample['pred_instances']['scores'].cpu().numpy()
pred_bbox_scores = np.hstack(
[pred_bboxes, pred_scores.reshape((-1, 1))])
self.results.append((ann, pred_bbox_scores))
def compute_metrics(self, results: list) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
results (list): The processed results of each batch.
Returns:
eval_results(Dict[str, float]): The computed metrics.
The keys are the names of the metrics, and the values
are corresponding results.
"""
logger: MMLogger = MMLogger.get_current_instance()
tmp_dir = None
if self.outfile_prefix is None:
tmp_dir = tempfile.TemporaryDirectory()
outfile_prefix = osp.join(tmp_dir.name, 'result')
else:
outfile_prefix = self.outfile_prefix
# convert predictions to coco format and dump to json file
result_file = self.results2json(results, outfile_prefix)
eval_results = OrderedDict()
if self.format_only:
logger.info(f'results are saved in {osp.dirname(outfile_prefix)}')
return eval_results
# load evaluation samples
eval_samples = self.load_eval_samples(result_file)
if 'AP' in self.metrics or 'MR' in self.metrics:
score_list = self.compare(eval_samples)
gt_num = sum([eval_samples[i].gt_num for i in eval_samples])
ign_num = sum([eval_samples[i].ign_num for i in eval_samples])
gt_num = gt_num - ign_num
img_num = len(eval_samples)
for metric in self.metrics:
logger.info(f'Evaluating {metric}...')
if metric == 'AP':
AP = self.eval_ap(score_list, gt_num, img_num)
eval_results['mAP'] = float(f'{round(AP, 4)}')
if metric == 'MR':
MR = self.eval_mr(score_list, gt_num, img_num)
eval_results['mMR'] = float(f'{round(MR, 4)}')
if metric == 'JI':
JI = self.eval_ji(eval_samples)
eval_results['JI'] = float(f'{round(JI, 4)}')
if tmp_dir is not None:
tmp_dir.cleanup()
return eval_results
def load_eval_samples(self, result_file):
"""Load data from annotations file and detection results.
Args:
result_file (str): The file path of the saved detection results.
Returns:
Dict[Image]: The detection result packaged by Image
"""
gt_str = self.file_client.get_text(self.ann_file).strip().split('\n')
gt_records = [json.loads(line) for line in gt_str]
pred_records = load(result_file)
eval_samples = dict()
for gt_record, pred_record in zip(gt_records, pred_records):
assert gt_record['ID'] == pred_record['ID'], \
'please set val_dataloader.sampler.shuffle=False and try again'
eval_samples[pred_record['ID']] = Image(self.eval_mode)
eval_samples[pred_record['ID']].load(gt_record, 'box', None,
PERSON_CLASSES, True)
eval_samples[pred_record['ID']].load(pred_record, 'box', None,
PERSON_CLASSES, False)
eval_samples[pred_record['ID']].clip_all_boader()
return eval_samples
def compare(self, samples):
"""Match the detection results with the ground_truth.
Args:
samples (dict[Image]): The detection result packaged by Image.
Returns:
score_list(list[tuple[ndarray, int, str]]): Matching result.
a list of tuples (dtbox, label, imgID) in the descending
sort of dtbox.score.
"""
score_list = list()
for id in samples:
if self.compare_matching_method == 'VOC':
result = samples[id].compare_voc(self.iou_thres)
else:
result = samples[id].compare_caltech(self.iou_thres)
score_list.extend(result)
# In the descending sort of dtbox score.
score_list.sort(key=lambda x: x[0][-1], reverse=True)
return score_list
@staticmethod
def eval_ap(score_list, gt_num, img_num):
"""Evaluate by average precision.
Args:
score_list(list[tuple[ndarray, int, str]]): Matching result.
a list of tuples (dtbox, label, imgID) in the descending
sort of dtbox.score.
gt_num(int): The number of gt boxes in the entire dataset.
img_num(int): The number of images in the entire dataset.
Returns:
ap(float): result of average precision.
"""
# calculate general ap score
def _calculate_map(_recall, _precision):
assert len(_recall) == len(_precision)
area = 0
for k in range(1, len(_recall)):
delta_h = (_precision[k - 1] + _precision[k]) / 2
delta_w = _recall[k] - _recall[k - 1]
area += delta_w * delta_h
return area
tp, fp = 0.0, 0.0
rpX, rpY = list(), list()
fpn = []
recalln = []
thr = []
fppi = []
for i, item in enumerate(score_list):
if item[1] == 1:
tp += 1.0
elif item[1] == 0:
fp += 1.0
fn = gt_num - tp
recall = tp / (tp + fn)
precision = tp / (tp + fp)
rpX.append(recall)
rpY.append(precision)
fpn.append(fp)
recalln.append(tp)
thr.append(item[0][-1])
fppi.append(fp / img_num)
ap = _calculate_map(rpX, rpY)
return ap
def eval_mr(self, score_list, gt_num, img_num):
"""Evaluate by Caltech-style log-average miss rate.
Args:
score_list(list[tuple[ndarray, int, str]]): Matching result.
a list of tuples (dtbox, label, imgID) in the descending
sort of dtbox.score.
gt_num(int): The number of gt boxes in the entire dataset.
img_num(int): The number of image in the entire dataset.
Returns:
mr(float): result of miss rate.
"""
# find greater_than
def _find_gt(lst, target):
for idx, _item in enumerate(lst):
if _item >= target:
return idx
return len(lst) - 1
if self.mr_ref == 'CALTECH_-2':
# CALTECH_MRREF_2: anchor points (from 10^-2 to 1) as in
# P.Dollar's paper
ref = [
0.0100, 0.0178, 0.03160, 0.0562, 0.1000, 0.1778, 0.3162,
0.5623, 1.000
]
else:
# CALTECH_MRREF_4: anchor points (from 10^-4 to 1) as in
# S.Zhang's paper
ref = [
0.0001, 0.0003, 0.00100, 0.0032, 0.0100, 0.0316, 0.1000,
0.3162, 1.000
]
tp, fp = 0.0, 0.0
fppiX, fppiY = list(), list()
for i, item in enumerate(score_list):
if item[1] == 1:
tp += 1.0
elif item[1] == 0:
fp += 1.0
fn = gt_num - tp
recall = tp / (tp + fn)
missrate = 1.0 - recall
fppi = fp / img_num
fppiX.append(fppi)
fppiY.append(missrate)
score = list()
for pos in ref:
argmin = _find_gt(fppiX, pos)
if argmin >= 0:
score.append(fppiY[argmin])
score = np.array(score)
mr = np.exp(np.log(score).mean())
return mr
def eval_ji(self, samples):
"""Evaluate by JI using multi_process.
Args:
samples(Dict[str, Image]): The detection result packaged by Image.
Returns:
ji(float): result of jaccard index.
"""
import math
res_line = []
res_ji = []
for i in range(10):
score_thr = 1e-1 * i
total = len(samples)
stride = math.ceil(total / self.num_ji_process)
result_queue = Queue(10000)
results, procs = [], []
records = list(samples.items())
for i in range(self.num_ji_process):
start = i * stride
end = np.min([start + stride, total])
sample_data = dict(records[start:end])
p = Process(
target=self.compute_ji_with_ignore,
args=(result_queue, sample_data, score_thr))
p.start()
procs.append(p)
for i in range(total):
t = result_queue.get()
results.append(t)
for p in procs:
p.join()
line, mean_ratio = self.gather(results)
line = 'score_thr:{:.1f}, {}'.format(score_thr, line)
res_line.append(line)
res_ji.append(mean_ratio)
return max(res_ji)
def compute_ji_with_ignore(self, result_queue, dt_result, score_thr):
"""Compute JI with ignore.
Args:
result_queue(Queue): The Queue for save compute result when
multi_process.
dt_result(dict[Image]): Detection result packaged by Image.
score_thr(float): The threshold of detection score.
Returns:
dict: compute result.
"""
for ID, record in dt_result.items():
gt_boxes = record.gt_boxes
dt_boxes = record.dt_boxes
keep = dt_boxes[:, -1] > score_thr
dt_boxes = dt_boxes[keep][:, :-1]
gt_tag = np.array(gt_boxes[:, -1] != -1)
matches = self.compute_ji_matching(dt_boxes, gt_boxes[gt_tag, :4])
# get the unmatched_indices
matched_indices = np.array([j for (j, _) in matches])
unmatched_indices = list(
set(np.arange(dt_boxes.shape[0])) - set(matched_indices))
num_ignore_dt = self.get_ignores(dt_boxes[unmatched_indices],
gt_boxes[~gt_tag, :4])
matched_indices = np.array([j for (_, j) in matches])
unmatched_indices = list(
set(np.arange(gt_boxes[gt_tag].shape[0])) -
set(matched_indices))
num_ignore_gt = self.get_ignores(
gt_boxes[gt_tag][unmatched_indices], gt_boxes[~gt_tag, :4])
# compute results
eps = 1e-6
k = len(matches)
m = gt_tag.sum() - num_ignore_gt
n = dt_boxes.shape[0] - num_ignore_dt
ratio = k / (m + n - k + eps)
recall = k / (m + eps)
cover = k / (n + eps)
noise = 1 - cover
result_dict = dict(
ratio=ratio,
recall=recall,
cover=cover,
noise=noise,
k=k,
m=m,
n=n)
result_queue.put_nowait(result_dict)
@staticmethod
def gather(results):
"""Integrate test results."""
assert len(results)
img_num = 0
for result in results:
if result['n'] != 0 or result['m'] != 0:
img_num += 1
mean_ratio = np.sum([rb['ratio'] for rb in results]) / img_num
valids = np.sum([rb['k'] for rb in results])
total = np.sum([rb['n'] for rb in results])
gtn = np.sum([rb['m'] for rb in results])
line = 'mean_ratio:{:.4f}, valids:{}, total:{}, gtn:{}'\
.format(mean_ratio, valids, total, gtn)
return line, mean_ratio
def compute_ji_matching(self, dt_boxes, gt_boxes):
"""Match the annotation box for each detection box.
Args:
dt_boxes(ndarray): Detection boxes.
gt_boxes(ndarray): Ground_truth boxes.
Returns:
matches_(list[tuple[int, int]]): Match result.
"""
assert dt_boxes.shape[-1] > 3 and gt_boxes.shape[-1] > 3
if dt_boxes.shape[0] < 1 or gt_boxes.shape[0] < 1:
return list()
ious = bbox_overlaps(dt_boxes, gt_boxes, mode='iou')
input_ = copy.deepcopy(ious)
input_[input_ < self.iou_thres] = 0
match_scipy = maximum_bipartite_matching(
csr_matrix(input_), perm_type='column')
matches_ = []
for i in range(len(match_scipy)):
if match_scipy[i] != -1:
matches_.append((i, int(match_scipy[i])))
return matches_
def get_ignores(self, dt_boxes, gt_boxes):
"""Get the number of ignore bboxes."""
if gt_boxes.size:
ioas = bbox_overlaps(dt_boxes, gt_boxes, mode='iof')
ioas = np.max(ioas, axis=1)
rows = np.where(ioas > self.iou_thres)[0]
return len(rows)
else:
return 0
class Image(object):
"""Data structure for evaluation of CrowdHuman.
Note:
This implementation is modified from https://github.com/Purkialo/
CrowdDet/blob/master/lib/evaluate/APMRToolkits/image.py
Args:
mode (int): Select the mode of evaluate. Valid mode include
0(just body box), 1(just head box) and 2(both of them).
Defaults to 0.
"""
def __init__(self, mode):
self.ID = None
self.width = None
self.height = None
self.dt_boxes = None
self.gt_boxes = None
self.eval_mode = mode
self.ign_num = None
self.gt_num = None
self.dt_num = None
def load(self, record, body_key, head_key, class_names, gt_flag):
"""Loading information for evaluation.
Args:
record (dict): Label information or test results.
The format might look something like this:
{
'ID': '273271,c9db000d5146c15',
'gtboxes': [
{'fbox': [72, 202, 163, 503], 'tag': 'person', ...},
{'fbox': [199, 180, 144, 499], 'tag': 'person', ...},
...
]
}
or:
{
'ID': '273271,c9db000d5146c15',
'width': 800,
'height': 1067,
'dtboxes': [
{
'box': [306.22, 205.95, 164.05, 394.04],
'score': 0.99,
'tag': 1
},
{
'box': [403.60, 178.66, 157.15, 421.33],
'score': 0.99,
'tag': 1
},
...
]
}
body_key (str, None): key of detection body box.
Valid when loading detection results and self.eval_mode!=1.
head_key (str, None): key of detection head box.
Valid when loading detection results and self.eval_mode!=0.
class_names (list[str]):class names of data set.
Defaults to ['background', 'person'].
gt_flag (bool): Indicate whether record is ground truth
or predicting the outcome.
"""
if 'ID' in record and self.ID is None:
self.ID = record['ID']
if 'width' in record and self.width is None:
self.width = record['width']
if 'height' in record and self.height is None:
self.height = record['height']
if gt_flag:
self.gt_num = len(record['gtboxes'])
body_bbox, head_bbox = self.load_gt_boxes(record, 'gtboxes',
class_names)
if self.eval_mode == 0:
self.gt_boxes = body_bbox
self.ign_num = (body_bbox[:, -1] == -1).sum()
elif self.eval_mode == 1:
self.gt_boxes = head_bbox
self.ign_num = (head_bbox[:, -1] == -1).sum()
else:
gt_tag = np.array([
body_bbox[i, -1] != -1 and head_bbox[i, -1] != -1
for i in range(len(body_bbox))
])
self.ign_num = (gt_tag == 0).sum()
self.gt_boxes = np.hstack(
(body_bbox[:, :-1], head_bbox[:, :-1],
gt_tag.reshape(-1, 1)))
if not gt_flag:
self.dt_num = len(record['dtboxes'])
if self.eval_mode == 0:
self.dt_boxes = self.load_det_boxes(record, 'dtboxes',
body_key, 'score')
elif self.eval_mode == 1:
self.dt_boxes = self.load_det_boxes(record, 'dtboxes',
head_key, 'score')
else:
body_dtboxes = self.load_det_boxes(record, 'dtboxes', body_key,
'score')
head_dtboxes = self.load_det_boxes(record, 'dtboxes', head_key,
'score')
self.dt_boxes = np.hstack((body_dtboxes, head_dtboxes))
@staticmethod
def load_gt_boxes(dict_input, key_name, class_names):
"""load ground_truth and transform [x, y, w, h] to [x1, y1, x2, y2]"""
assert key_name in dict_input
if len(dict_input[key_name]) < 1:
return np.empty([0, 5])
head_bbox = []
body_bbox = []
for rb in dict_input[key_name]:
if rb['tag'] in class_names:
body_tag = class_names.index(rb['tag'])
head_tag = copy.deepcopy(body_tag)
else:
body_tag = -1
head_tag = -1
if 'extra' in rb:
if 'ignore' in rb['extra']:
if rb['extra']['ignore'] != 0:
body_tag = -1
head_tag = -1
if 'head_attr' in rb:
if 'ignore' in rb['head_attr']:
if rb['head_attr']['ignore'] != 0:
head_tag = -1
head_bbox.append(np.hstack((rb['hbox'], head_tag)))
body_bbox.append(np.hstack((rb['fbox'], body_tag)))
head_bbox = np.array(head_bbox)
head_bbox[:, 2:4] += head_bbox[:, :2]
body_bbox = np.array(body_bbox)
body_bbox[:, 2:4] += body_bbox[:, :2]
return body_bbox, head_bbox
@staticmethod
def load_det_boxes(dict_input, key_name, key_box, key_score, key_tag=None):
"""load detection boxes."""
assert key_name in dict_input
if len(dict_input[key_name]) < 1:
return np.empty([0, 5])
else:
assert key_box in dict_input[key_name][0]
if key_score:
assert key_score in dict_input[key_name][0]
if key_tag:
assert key_tag in dict_input[key_name][0]
if key_score:
if key_tag:
bboxes = np.vstack([
np.hstack((rb[key_box], rb[key_score], rb[key_tag]))
for rb in dict_input[key_name]
])
else:
bboxes = np.vstack([
np.hstack((rb[key_box], rb[key_score]))
for rb in dict_input[key_name]
])
else:
if key_tag:
bboxes = np.vstack([
np.hstack((rb[key_box], rb[key_tag]))
for rb in dict_input[key_name]
])
else:
bboxes = np.vstack(
[rb[key_box] for rb in dict_input[key_name]])
bboxes[:, 2:4] += bboxes[:, :2]
return bboxes
def clip_all_boader(self):
"""Make sure boxes are within the image range."""
def _clip_boundary(boxes, height, width):
assert boxes.shape[-1] >= 4
boxes[:, 0] = np.minimum(np.maximum(boxes[:, 0], 0), width - 1)
boxes[:, 1] = np.minimum(np.maximum(boxes[:, 1], 0), height - 1)
boxes[:, 2] = np.maximum(np.minimum(boxes[:, 2], width), 0)
boxes[:, 3] = np.maximum(np.minimum(boxes[:, 3], height), 0)
return boxes
assert self.dt_boxes.shape[-1] >= 4
assert self.gt_boxes.shape[-1] >= 4
assert self.width is not None and self.height is not None
if self.eval_mode == 2:
self.dt_boxes[:, :4] = _clip_boundary(self.dt_boxes[:, :4],
self.height, self.width)
self.gt_boxes[:, :4] = _clip_boundary(self.gt_boxes[:, :4],
self.height, self.width)
self.dt_boxes[:, 4:8] = _clip_boundary(self.dt_boxes[:, 4:8],
self.height, self.width)
self.gt_boxes[:, 4:8] = _clip_boundary(self.gt_boxes[:, 4:8],
self.height, self.width)
else:
self.dt_boxes = _clip_boundary(self.dt_boxes, self.height,
self.width)
self.gt_boxes = _clip_boundary(self.gt_boxes, self.height,
self.width)
def compare_voc(self, thres):
"""Match the detection results with the ground_truth by VOC.
Args:
thres (float): IOU threshold.
Returns:
score_list(list[tuple[ndarray, int, str]]): Matching result.
a list of tuples (dtbox, label, imgID) in the descending
sort of dtbox.score.
"""
if self.dt_boxes is None:
return list()
dtboxes = self.dt_boxes
gtboxes = self.gt_boxes if self.gt_boxes is not None else list()
dtboxes.sort(key=lambda x: x.score, reverse=True)
gtboxes.sort(key=lambda x: x.ign)
score_list = list()
for i, dt in enumerate(dtboxes):
maxpos = -1
maxiou = thres
for j, gt in enumerate(gtboxes):
overlap = dt.iou(gt)
if overlap > maxiou:
maxiou = overlap
maxpos = j
if maxpos >= 0:
if gtboxes[maxpos].ign == 0:
gtboxes[maxpos].matched = 1
dtboxes[i].matched = 1
score_list.append((dt, self.ID))
else:
dtboxes[i].matched = -1
else:
dtboxes[i].matched = 0
score_list.append((dt, self.ID))
return score_list
def compare_caltech(self, thres):
"""Match the detection results with the ground_truth by Caltech
matching strategy.
Args:
thres (float): IOU threshold.
Returns:
score_list(list[tuple[ndarray, int, str]]): Matching result.
a list of tuples (dtbox, label, imgID) in the descending
sort of dtbox.score.
"""
if self.dt_boxes is None or self.gt_boxes is None:
return list()
dtboxes = self.dt_boxes if self.dt_boxes is not None else list()
gtboxes = self.gt_boxes if self.gt_boxes is not None else list()
dt_matched = np.zeros(dtboxes.shape[0])
gt_matched = np.zeros(gtboxes.shape[0])
dtboxes = np.array(sorted(dtboxes, key=lambda x: x[-1], reverse=True))
gtboxes = np.array(sorted(gtboxes, key=lambda x: x[-1], reverse=True))
if len(dtboxes):
overlap_iou = bbox_overlaps(dtboxes, gtboxes, mode='iou')
overlap_ioa = bbox_overlaps(dtboxes, gtboxes, mode='iof')
else:
return list()
score_list = list()
for i, dt in enumerate(dtboxes):
maxpos = -1
maxiou = thres
for j, gt in enumerate(gtboxes):
if gt_matched[j] == 1:
continue
if gt[-1] > 0:
overlap = overlap_iou[i][j]
if overlap > maxiou:
maxiou = overlap
maxpos = j
else:
if maxpos >= 0:
break
else:
overlap = overlap_ioa[i][j]
if overlap > thres:
maxiou = overlap
maxpos = j
if maxpos >= 0:
if gtboxes[maxpos, -1] > 0:
gt_matched[maxpos] = 1
dt_matched[i] = 1
score_list.append((dt, 1, self.ID))
else:
dt_matched[i] = -1
else:
dt_matched[i] = 0
score_list.append((dt, 0, self.ID))
return score_list
|