File size: 24,448 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
# Copyright (c) OpenMMLab. All rights reserved.
import datetime
import itertools
import os.path as osp
import tempfile
from typing import Dict, Optional, Sequence, Tuple, Union

import mmcv
import numpy as np
from mmengine.evaluator import BaseMetric
from mmengine.fileio import FileClient, dump, load
from mmengine.logging import MMLogger, print_log
from terminaltables import AsciiTable

from mmdet.datasets.api_wrappers import COCOPanoptic
from mmdet.registry import METRICS
from ..functional import (INSTANCE_OFFSET, pq_compute_multi_core,
                          pq_compute_single_core)

try:
    import panopticapi
    from panopticapi.evaluation import VOID, PQStat
    from panopticapi.utils import id2rgb, rgb2id
except ImportError:
    panopticapi = None
    id2rgb = None
    rgb2id = None
    VOID = None
    PQStat = None


@METRICS.register_module()
class CocoPanopticMetric(BaseMetric):
    """COCO panoptic segmentation evaluation metric.

    Evaluate PQ, SQ RQ for panoptic segmentation tasks. Please refer to
    https://cocodataset.org/#panoptic-eval for more details.

    Args:
        ann_file (str, optional): Path to the coco format annotation file.
            If not specified, ground truth annotations from the dataset will
            be converted to coco format. Defaults to None.
        seg_prefix (str, optional): Path to the directory which contains the
            coco panoptic segmentation mask. It should be specified when
            evaluate. Defaults to None.
        classwise (bool): Whether to evaluate the metric class-wise.
            Defaults to False.
        outfile_prefix (str, optional): The prefix of json files. It includes
            the file path and the prefix of filename, e.g., "a/b/prefix".
            If not specified, a temp file will be created.
            It should be specified when format_only is True. Defaults to None.
        format_only (bool): Format the output results without perform
            evaluation. It is useful when you want to format the result
            to a specific format and submit it to the test server.
            Defaults to False.
        nproc (int): Number of processes for panoptic quality computing.
            Defaults to 32. When ``nproc`` exceeds the number of cpu cores,
            the number of cpu cores is used.
        file_client_args (dict): Arguments to instantiate a FileClient.
            See :class:`mmengine.fileio.FileClient` for details.
            Defaults to ``dict(backend='disk')``.
        collect_device (str): Device name used for collecting results from
            different ranks during distributed training. Must be 'cpu' or
            'gpu'. Defaults to 'cpu'.
        prefix (str, optional): The prefix that will be added in the metric
            names to disambiguate homonymous metrics of different evaluators.
            If prefix is not provided in the argument, self.default_prefix
            will be used instead. Defaults to None.
    """
    default_prefix: Optional[str] = 'coco_panoptic'

    def __init__(self,
                 ann_file: Optional[str] = None,
                 seg_prefix: Optional[str] = None,
                 classwise: bool = False,
                 format_only: bool = False,
                 outfile_prefix: Optional[str] = None,
                 nproc: int = 32,
                 file_client_args: dict = dict(backend='disk'),
                 collect_device: str = 'cpu',
                 prefix: Optional[str] = None) -> None:
        if panopticapi is None:
            raise RuntimeError(
                'panopticapi is not installed, please install it by: '
                'pip install git+https://github.com/cocodataset/'
                'panopticapi.git.')

        super().__init__(collect_device=collect_device, prefix=prefix)
        self.classwise = classwise
        self.format_only = format_only
        if self.format_only:
            assert outfile_prefix is not None, 'outfile_prefix must be not'
            'None when format_only is True, otherwise the result files will'
            'be saved to a temp directory which will be cleaned up at the end.'

        self.tmp_dir = None
        # outfile_prefix should be a prefix of a path which points to a shared
        # storage when train or test with multi nodes.
        self.outfile_prefix = outfile_prefix
        if outfile_prefix is None:
            self.tmp_dir = tempfile.TemporaryDirectory()
            self.outfile_prefix = osp.join(self.tmp_dir.name, 'results')
        # the directory to save predicted panoptic segmentation mask
        self.seg_out_dir = f'{self.outfile_prefix}.panoptic'
        self.nproc = nproc
        self.seg_prefix = seg_prefix

        self.cat_ids = None
        self.cat2label = None

        self.file_client_args = file_client_args
        self.file_client = FileClient(**file_client_args)

        if ann_file:
            with self.file_client.get_local_path(ann_file) as local_path:
                self._coco_api = COCOPanoptic(local_path)
            self.categories = self._coco_api.cats
        else:
            self._coco_api = None
            self.categories = None

        self.file_client = FileClient(**file_client_args)

    def __del__(self) -> None:
        """Clean up."""
        if self.tmp_dir is not None:
            self.tmp_dir.cleanup()

    def gt_to_coco_json(self, gt_dicts: Sequence[dict],
                        outfile_prefix: str) -> Tuple[str, str]:
        """Convert ground truth to coco panoptic segmentation format json file.

        Args:
            gt_dicts (Sequence[dict]): Ground truth of the dataset.
            outfile_prefix (str): The filename prefix of the json file. If the
                prefix is "somepath/xxx", the json file will be named
                "somepath/xxx.gt.json".

        Returns:
            Tuple[str, str]: The filename of the json file and the name of the\
                directory which contains panoptic segmentation masks.
        """
        assert len(gt_dicts) > 0, 'gt_dicts is empty.'
        gt_folder = osp.dirname(gt_dicts[0]['seg_map_path'])
        converted_json_path = f'{outfile_prefix}.gt.json'

        categories = []
        for id, name in enumerate(self.dataset_meta['classes']):
            isthing = 1 if name in self.dataset_meta['thing_classes'] else 0
            categories.append({'id': id, 'name': name, 'isthing': isthing})

        image_infos = []
        annotations = []
        for gt_dict in gt_dicts:
            img_id = gt_dict['image_id']
            image_info = {
                'id': img_id,
                'width': gt_dict['width'],
                'height': gt_dict['height'],
                'file_name': osp.split(gt_dict['seg_map_path'])[-1]
            }
            image_infos.append(image_info)

            pan_png = mmcv.imread(gt_dict['seg_map_path']).squeeze()
            pan_png = pan_png[:, :, ::-1]
            pan_png = rgb2id(pan_png)
            segments_info = []
            for segment_info in gt_dict['segments_info']:
                id = segment_info['id']
                label = segment_info['category']
                mask = pan_png == id
                isthing = categories[label]['isthing']
                if isthing:
                    iscrowd = 1 if not segment_info['is_thing'] else 0
                else:
                    iscrowd = 0

                new_segment_info = {
                    'id': id,
                    'category_id': label,
                    'isthing': isthing,
                    'iscrowd': iscrowd,
                    'area': mask.sum()
                }
                segments_info.append(new_segment_info)

            segm_file = image_info['file_name'].replace('jpg', 'png')
            annotation = dict(
                image_id=img_id,
                segments_info=segments_info,
                file_name=segm_file)
            annotations.append(annotation)
            pan_png = id2rgb(pan_png)

        info = dict(
            date_created=str(datetime.datetime.now()),
            description='Coco json file converted by mmdet CocoPanopticMetric.'
        )
        coco_json = dict(
            info=info,
            images=image_infos,
            categories=categories,
            licenses=None,
        )
        if len(annotations) > 0:
            coco_json['annotations'] = annotations
        dump(coco_json, converted_json_path)
        return converted_json_path, gt_folder

    def result2json(self, results: Sequence[dict],
                    outfile_prefix: str) -> Tuple[str, str]:
        """Dump the panoptic results to a COCO style json file and a directory.

        Args:
            results (Sequence[dict]): Testing results of the dataset.
            outfile_prefix (str): The filename prefix of the json files and the
                directory.

        Returns:
            Tuple[str, str]: The json file and the directory which contains \
                panoptic segmentation masks. The filename of the json is
                "somepath/xxx.panoptic.json" and name of the directory is
                "somepath/xxx.panoptic".
        """
        label2cat = dict((v, k) for (k, v) in self.cat2label.items())
        pred_annotations = []
        for idx in range(len(results)):
            result = results[idx]
            for segment_info in result['segments_info']:
                sem_label = segment_info['category_id']
                # convert sem_label to json label
                cat_id = label2cat[sem_label]
                segment_info['category_id'] = label2cat[sem_label]
                is_thing = self.categories[cat_id]['isthing']
                segment_info['isthing'] = is_thing
            pred_annotations.append(result)
        pan_json_results = dict(annotations=pred_annotations)
        json_filename = f'{outfile_prefix}.panoptic.json'
        dump(pan_json_results, json_filename)
        return json_filename, (
            self.seg_out_dir
            if self.tmp_dir is None else tempfile.gettempdir())

    def _parse_predictions(self,
                           pred: dict,
                           img_id: int,
                           segm_file: str,
                           label2cat=None) -> dict:
        """Parse panoptic segmentation predictions.

        Args:
            pred (dict): Panoptic segmentation predictions.
            img_id (int): Image id.
            segm_file (str): Segmentation file name.
            label2cat (dict): Mapping from label to category id.
                Defaults to None.

        Returns:
            dict: Parsed predictions.
        """
        result = dict()
        result['img_id'] = img_id
        # shape (1, H, W) -> (H, W)
        pan = pred['pred_panoptic_seg']['sem_seg'].cpu().numpy()[0]
        pan_labels = np.unique(pan)
        segments_info = []
        for pan_label in pan_labels:
            sem_label = pan_label % INSTANCE_OFFSET
            # We reserve the length of dataset_meta['classes'] for VOID label
            if sem_label == len(self.dataset_meta['classes']):
                continue
            mask = pan == pan_label
            area = mask.sum()
            segments_info.append({
                'id':
                int(pan_label),
                # when ann_file provided, sem_label should be cat_id, otherwise
                # sem_label should be a continuous id, not the cat_id
                # defined in dataset
                'category_id':
                label2cat[sem_label] if label2cat else sem_label,
                'area':
                int(area)
            })
        # evaluation script uses 0 for VOID label.
        pan[pan % INSTANCE_OFFSET == len(self.dataset_meta['classes'])] = VOID
        pan = id2rgb(pan).astype(np.uint8)
        mmcv.imwrite(pan[:, :, ::-1], osp.join(self.seg_out_dir, segm_file))
        result = {
            'image_id': img_id,
            'segments_info': segments_info,
            'file_name': segm_file
        }

        return result

    def _compute_batch_pq_stats(self, data_samples: Sequence[dict]):
        """Process gts and predictions when ``outfile_prefix`` is not set, gts
        are from dataset or a json file which is defined by ``ann_file``.

        Intermediate results, ``pq_stats``, are computed here and put into
        ``self.results``.
        """
        if self._coco_api is None:
            categories = dict()
            for id, name in enumerate(self.dataset_meta['classes']):
                isthing = 1 if name in self.dataset_meta['thing_classes']\
                    else 0
                categories[id] = {'id': id, 'name': name, 'isthing': isthing}
            label2cat = None
        else:
            categories = self.categories
            cat_ids = self._coco_api.get_cat_ids(
                cat_names=self.dataset_meta['classes'])
            label2cat = {i: cat_id for i, cat_id in enumerate(cat_ids)}

        for data_sample in data_samples:
            # parse pred
            img_id = data_sample['img_id']
            segm_file = osp.basename(data_sample['img_path']).replace(
                'jpg', 'png')
            result = self._parse_predictions(
                pred=data_sample,
                img_id=img_id,
                segm_file=segm_file,
                label2cat=label2cat)

            # parse gt
            gt = dict()
            gt['image_id'] = img_id
            gt['width'] = data_sample['ori_shape'][1]
            gt['height'] = data_sample['ori_shape'][0]
            gt['file_name'] = segm_file

            if self._coco_api is None:
                # get segments_info from data_sample
                seg_map_path = osp.join(self.seg_prefix, segm_file)
                pan_png = mmcv.imread(seg_map_path).squeeze()
                pan_png = pan_png[:, :, ::-1]
                pan_png = rgb2id(pan_png)
                segments_info = []

                for segment_info in data_sample['segments_info']:
                    id = segment_info['id']
                    label = segment_info['category']
                    mask = pan_png == id
                    isthing = categories[label]['isthing']
                    if isthing:
                        iscrowd = 1 if not segment_info['is_thing'] else 0
                    else:
                        iscrowd = 0

                    new_segment_info = {
                        'id': id,
                        'category_id': label,
                        'isthing': isthing,
                        'iscrowd': iscrowd,
                        'area': mask.sum()
                    }
                    segments_info.append(new_segment_info)
            else:
                # get segments_info from annotation file
                segments_info = self._coco_api.imgToAnns[img_id]

            gt['segments_info'] = segments_info

            pq_stats = pq_compute_single_core(
                proc_id=0,
                annotation_set=[(gt, result)],
                gt_folder=self.seg_prefix,
                pred_folder=self.seg_out_dir,
                categories=categories,
                file_client=self.file_client)

            self.results.append(pq_stats)

    def _process_gt_and_predictions(self, data_samples: Sequence[dict]):
        """Process gts and predictions when ``outfile_prefix`` is set.

        The predictions will be saved to directory specified by
        ``outfile_predfix``. The matched pair (gt, result) will be put into
        ``self.results``.
        """
        for data_sample in data_samples:
            # parse pred
            img_id = data_sample['img_id']
            segm_file = osp.basename(data_sample['img_path']).replace(
                'jpg', 'png')
            result = self._parse_predictions(
                pred=data_sample, img_id=img_id, segm_file=segm_file)

            # parse gt
            gt = dict()
            gt['image_id'] = img_id
            gt['width'] = data_sample['ori_shape'][1]
            gt['height'] = data_sample['ori_shape'][0]

            if self._coco_api is None:
                # get segments_info from dataset
                gt['segments_info'] = data_sample['segments_info']
                gt['seg_map_path'] = data_sample['seg_map_path']

            self.results.append((gt, result))

    # TODO: data_batch is no longer needed, consider adjusting the
    #  parameter position
    def process(self, data_batch: dict, data_samples: Sequence[dict]) -> None:
        """Process one batch of data samples and predictions. The processed
        results should be stored in ``self.results``, which will be used to
        compute the metrics when all batches have been processed.

        Args:
            data_batch (dict): A batch of data from the dataloader.
            data_samples (Sequence[dict]): A batch of data samples that
                contain annotations and predictions.
        """
        # If ``self.tmp_dir`` is none, it will save gt and predictions to
        # self.results, otherwise, it will compute pq_stats here.
        if self.tmp_dir is None:
            self._process_gt_and_predictions(data_samples)
        else:
            self._compute_batch_pq_stats(data_samples)

    def compute_metrics(self, results: list) -> Dict[str, float]:
        """Compute the metrics from processed results.

        Args:
            results (list): The processed results of each batch. There
                are two cases:

                - When ``outfile_prefix`` is not provided, the elements in
                  results are pq_stats which can be summed directly to get PQ.
                - When ``outfile_prefix`` is provided, the elements in
                  results are tuples like (gt, pred).

        Returns:
            Dict[str, float]: The computed metrics. The keys are the names of
                the metrics, and the values are corresponding results.
        """
        logger: MMLogger = MMLogger.get_current_instance()

        if self.tmp_dir is None:
            # do evaluation after collect all the results

            # split gt and prediction list
            gts, preds = zip(*results)

            if self._coco_api is None:
                # use converted gt json file to initialize coco api
                logger.info('Converting ground truth to coco format...')
                coco_json_path, gt_folder = self.gt_to_coco_json(
                    gt_dicts=gts, outfile_prefix=self.outfile_prefix)
                self._coco_api = COCOPanoptic(coco_json_path)
            else:
                gt_folder = self.seg_prefix

            self.cat_ids = self._coco_api.get_cat_ids(
                cat_names=self.dataset_meta['classes'])
            self.cat2label = {
                cat_id: i
                for i, cat_id in enumerate(self.cat_ids)
            }
            self.img_ids = self._coco_api.get_img_ids()
            self.categories = self._coco_api.cats

            # convert predictions to coco format and dump to json file
            json_filename, pred_folder = self.result2json(
                results=preds, outfile_prefix=self.outfile_prefix)

            if self.format_only:
                logger.info('results are saved in '
                            f'{osp.dirname(self.outfile_prefix)}')
                return dict()

            imgs = self._coco_api.imgs
            gt_json = self._coco_api.img_ann_map
            gt_json = [{
                'image_id': k,
                'segments_info': v,
                'file_name': imgs[k]['segm_file']
            } for k, v in gt_json.items()]
            pred_json = load(json_filename)
            pred_json = dict(
                (el['image_id'], el) for el in pred_json['annotations'])

            # match the gt_anns and pred_anns in the same image
            matched_annotations_list = []
            for gt_ann in gt_json:
                img_id = gt_ann['image_id']
                if img_id not in pred_json.keys():
                    raise Exception('no prediction for the image'
                                    ' with id: {}'.format(img_id))
                matched_annotations_list.append((gt_ann, pred_json[img_id]))

            pq_stat = pq_compute_multi_core(
                matched_annotations_list,
                gt_folder,
                pred_folder,
                self.categories,
                file_client=self.file_client,
                nproc=self.nproc)

        else:
            # aggregate the results generated in process
            if self._coco_api is None:
                categories = dict()
                for id, name in enumerate(self.dataset_meta['classes']):
                    isthing = 1 if name in self.dataset_meta[
                        'thing_classes'] else 0
                    categories[id] = {
                        'id': id,
                        'name': name,
                        'isthing': isthing
                    }
                self.categories = categories

            pq_stat = PQStat()
            for result in results:
                pq_stat += result

        metrics = [('All', None), ('Things', True), ('Stuff', False)]
        pq_results = {}

        for name, isthing in metrics:
            pq_results[name], classwise_results = pq_stat.pq_average(
                self.categories, isthing=isthing)
            if name == 'All':
                pq_results['classwise'] = classwise_results

        classwise_results = None
        if self.classwise:
            classwise_results = {
                k: v
                for k, v in zip(self.dataset_meta['classes'],
                                pq_results['classwise'].values())
            }

        print_panoptic_table(pq_results, classwise_results, logger=logger)
        results = parse_pq_results(pq_results)

        return results


def parse_pq_results(pq_results: dict) -> dict:
    """Parse the Panoptic Quality results.

    Args:
        pq_results (dict): Panoptic Quality results.

    Returns:
        dict: Panoptic Quality results parsed.
    """
    result = dict()
    result['PQ'] = 100 * pq_results['All']['pq']
    result['SQ'] = 100 * pq_results['All']['sq']
    result['RQ'] = 100 * pq_results['All']['rq']
    result['PQ_th'] = 100 * pq_results['Things']['pq']
    result['SQ_th'] = 100 * pq_results['Things']['sq']
    result['RQ_th'] = 100 * pq_results['Things']['rq']
    result['PQ_st'] = 100 * pq_results['Stuff']['pq']
    result['SQ_st'] = 100 * pq_results['Stuff']['sq']
    result['RQ_st'] = 100 * pq_results['Stuff']['rq']
    return result


def print_panoptic_table(
        pq_results: dict,
        classwise_results: Optional[dict] = None,
        logger: Optional[Union['MMLogger', str]] = None) -> None:
    """Print the panoptic evaluation results table.

    Args:
        pq_results(dict): The Panoptic Quality results.
        classwise_results(dict, optional): The classwise Panoptic Quality.
            results. The keys are class names and the values are metrics.
            Defaults to None.
        logger (:obj:`MMLogger` | str, optional): Logger used for printing
            related information during evaluation. Default: None.
    """

    headers = ['', 'PQ', 'SQ', 'RQ', 'categories']
    data = [headers]
    for name in ['All', 'Things', 'Stuff']:
        numbers = [
            f'{(pq_results[name][k] * 100):0.3f}' for k in ['pq', 'sq', 'rq']
        ]
        row = [name] + numbers + [pq_results[name]['n']]
        data.append(row)
    table = AsciiTable(data)
    print_log('Panoptic Evaluation Results:\n' + table.table, logger=logger)

    if classwise_results is not None:
        class_metrics = [(name, ) + tuple(f'{(metrics[k] * 100):0.3f}'
                                          for k in ['pq', 'sq', 'rq'])
                         for name, metrics in classwise_results.items()]
        num_columns = min(8, len(class_metrics) * 4)
        results_flatten = list(itertools.chain(*class_metrics))
        headers = ['category', 'PQ', 'SQ', 'RQ'] * (num_columns // 4)
        results_2d = itertools.zip_longest(
            *[results_flatten[i::num_columns] for i in range(num_columns)])
        data = [headers]
        data += [result for result in results_2d]
        table = AsciiTable(data)
        print_log(
            'Classwise Panoptic Evaluation Results:\n' + table.table,
            logger=logger)