File size: 11,455 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import List, Optional, Sequence, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.fileio import list_from_file
from mmengine.runner import autocast
from mmengine.utils import is_seq_of

from mmcls.models.losses import convert_to_one_hot
from mmcls.registry import MODELS
from mmcls.structures import ClsDataSample
from .cls_head import ClsHead


class NormProduct(nn.Linear):
    """An enhanced linear layer with k clustering centers to calculate product
    between normalized input and linear weight.

    Args:
        in_features (int): size of each input sample.
        out_features (int): size of each output sample
        k (int): The number of clustering centers. Defaults to 1.
        bias (bool): Whether there is bias. If set to ``False``, the
            layer will not learn an additive bias. Defaults to ``True``.
        feature_norm (bool): Whether to normalize the input feature.
            Defaults to ``True``.
        weight_norm (bool):Whether to normalize the weight.
            Defaults to ``True``.
    """

    def __init__(self,
                 in_features: int,
                 out_features: int,
                 k=1,
                 bias: bool = False,
                 feature_norm: bool = True,
                 weight_norm: bool = True):

        super().__init__(in_features, out_features * k, bias=bias)
        self.weight_norm = weight_norm
        self.feature_norm = feature_norm
        self.out_features = out_features
        self.k = k

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        if self.feature_norm:
            input = F.normalize(input)
        if self.weight_norm:
            weight = F.normalize(self.weight)
        else:
            weight = self.weight
        cosine_all = F.linear(input, weight, self.bias)

        if self.k == 1:
            return cosine_all
        else:
            cosine_all = cosine_all.view(-1, self.out_features, self.k)
            cosine, _ = torch.max(cosine_all, dim=2)
            return cosine


@MODELS.register_module()
class ArcFaceClsHead(ClsHead):
    """ArcFace classifier head.

    A PyTorch implementation of paper `ArcFace: Additive Angular Margin Loss
    for Deep Face Recognition <https://arxiv.org/abs/1801.07698>`_ and
    `Sub-center ArcFace: Boosting Face Recognition by Large-Scale Noisy Web
    Faces <https://link.springer.com/chapter/10.1007/978-3-030-58621-8_43>`_

    Example:
        To use ArcFace in config files.

        1. use vanilla ArcFace

        .. code:: python

            mode = dict(
                backbone = xxx,
                neck = xxxx,
                head=dict(
                    type='ArcFaceClsHead',
                    num_classes=5000,
                    in_channels=1024,
                    loss = dict(type='CrossEntropyLoss', loss_weight=1.0),
                    init_cfg=None),
            )

        2. use SubCenterArcFace with 3 sub-centers

        .. code:: python

            mode = dict(
                backbone = xxx,
                neck = xxxx,
                head=dict(
                    type='ArcFaceClsHead',
                    num_classes=5000,
                    in_channels=1024,
                    num_subcenters=3,
                    loss = dict(type='CrossEntropyLoss', loss_weight=1.0),
                    init_cfg=None),
            )

        3. use SubCenterArcFace With CountPowerAdaptiveMargins

        .. code:: python

            mode = dict(
                backbone = xxx,
                neck = xxxx,
                head=dict(
                    type='ArcFaceClsHead',
                    num_classes=5000,
                    in_channels=1024,
                    num_subcenters=3,
                    loss = dict(type='CrossEntropyLoss', loss_weight=1.0),
                    init_cfg=None),
            )

            custom_hooks = [dict(type='SetAdaptiveMarginsHook')]


    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        num_subcenters (int): Number of subcenters. Defaults to 1.
        scale (float): Scale factor of output logit. Defaults to 64.0.
        margins (float): The penalty margin. Could be the fllowing formats:

            - float: The margin, would be same for all the categories.
            - Sequence[float]: The category-based margins list.
            - str: A '.txt' file path which contains a list. Each line
              represents the margin of a category, and the number in the
              i-th row indicates the margin of the i-th class.

            Defaults to 0.5.
        easy_margin (bool): Avoid theta + m >= PI. Defaults to False.
        loss (dict): Config of classification loss. Defaults to
            ``dict(type='CrossEntropyLoss', loss_weight=1.0)``.
        init_cfg (dict, optional): the config to control the initialization.
            Defaults to None.
    """

    def __init__(self,
                 num_classes: int,
                 in_channels: int,
                 num_subcenters: int = 1,
                 scale: float = 64.,
                 margins: Optional[Union[float, Sequence[float], str]] = 0.50,
                 easy_margin: bool = False,
                 loss: dict = dict(type='CrossEntropyLoss', loss_weight=1.0),
                 init_cfg: Optional[dict] = None):

        super(ArcFaceClsHead, self).__init__(init_cfg=init_cfg)
        if not isinstance(loss, nn.Module):
            loss = MODELS.build(loss)
        self.loss_module = loss

        assert num_subcenters >= 1 and num_classes >= 0
        self.in_channels = in_channels
        self.num_classes = num_classes
        self.num_subcenters = num_subcenters
        self.scale = scale
        self.easy_margin = easy_margin

        self.norm_product = NormProduct(in_channels, num_classes,
                                        num_subcenters)

        if isinstance(margins, float):
            margins = [margins] * num_classes
        elif isinstance(margins, str) and margins.endswith('.txt'):
            margins = [float(item) for item in list_from_file(margins)]
        else:
            assert is_seq_of(list(margins), (float, int)), (
                'the attribute `margins` in ``ArcFaceClsHead`` should be a '
                ' float, a Sequence of float, or a ".txt" file path.')

        assert len(margins) == num_classes, \
            'The length of margins must be equal with num_classes.'

        self.register_buffer(
            'margins', torch.tensor(margins).float(), persistent=False)
        # To make `phi` monotonic decreasing, refers to
        # https://github.com/deepinsight/insightface/issues/108
        sinm_m = torch.sin(math.pi - self.margins) * self.margins
        threshold = torch.cos(math.pi - self.margins)
        self.register_buffer('sinm_m', sinm_m, persistent=False)
        self.register_buffer('threshold', threshold, persistent=False)

    def set_margins(self, margins: Union[Sequence[float], float]) -> None:
        """set margins of arcface head.

        Args:
            margins (Union[Sequence[float], float]): The marigins.
        """
        if isinstance(margins, float):
            margins = [margins] * self.num_classes
        assert is_seq_of(
            list(margins), float) and (len(margins) == self.num_classes), (
                f'margins must be Sequence[Union(float, int)], get {margins}')

        self.margins = torch.tensor(
            margins, device=self.margins.device, dtype=torch.float32)
        self.sinm_m = torch.sin(self.margins) * self.margins
        self.threshold = -torch.cos(self.margins)

    def pre_logits(self, feats: Tuple[torch.Tensor]) -> torch.Tensor:
        """The process before the final classification head.

        The input ``feats`` is a tuple of tensor, and each tensor is the
        feature of a backbone stage. In ``ArcFaceHead``, we just obtain the
        feature of the last stage.
        """
        # The ArcFaceHead doesn't have other module, just return after
        # unpacking.
        return feats[-1]

    def _get_logit_with_margin(self, pre_logits, target):
        """add arc margin to the cosine in target index.

        The target must be in index format.
        """
        assert target.dim() == 1 or (
            target.dim() == 2 and target.shape[1] == 1), \
            'The target must be in index format.'
        cosine = self.norm_product(pre_logits)
        phi = torch.cos(torch.acos(cosine) + self.margins)

        if self.easy_margin:
            # when cosine>0, choose phi
            # when cosine<=0, choose cosine
            phi = torch.where(cosine > 0, phi, cosine)
        else:
            # when cos>th, choose phi
            # when cos<=th, choose cosine-mm
            phi = torch.where(cosine > self.threshold, phi,
                              cosine - self.sinm_m)

        target = convert_to_one_hot(target, self.num_classes)
        output = target * phi + (1 - target) * cosine
        return output

    def forward(self,
                feats: Tuple[torch.Tensor],
                target: Optional[torch.Tensor] = None) -> torch.Tensor:
        """The forward process."""
        # Disable AMP
        with autocast(enabled=False):
            pre_logits = self.pre_logits(feats)

            if target is None:
                # when eval, logit is the cosine between W and pre_logits;
                # cos(theta_yj) = (x/||x||) * (W/||W||)
                logit = self.norm_product(pre_logits)
            else:
                # when training, add a margin to the pre_logits where target is
                # True, then logit is the cosine between W and new pre_logits
                logit = self._get_logit_with_margin(pre_logits, target)

        return self.scale * logit

    def loss(self, feats: Tuple[torch.Tensor],
             data_samples: List[ClsDataSample], **kwargs) -> dict:
        """Calculate losses from the classification score.

        Args:
            feats (tuple[Tensor]): The features extracted from the backbone.
                Multiple stage inputs are acceptable but only the last stage
                will be used to classify. The shape of every item should be
                ``(num_samples, num_classes)``.
            data_samples (List[ClsDataSample]): The annotation data of
                every samples.
            **kwargs: Other keyword arguments to forward the loss module.

        Returns:
            dict[str, Tensor]: a dictionary of loss components
        """
        # Unpack data samples and pack targets
        label_target = torch.cat([i.gt_label.label for i in data_samples])
        if 'score' in data_samples[0].gt_label:
            # Batch augmentation may convert labels to one-hot format scores.
            target = torch.stack([i.gt_label.score for i in data_samples])
        else:
            # change the labels to to one-hot format scores.
            target = label_target

        # the index format target would be used
        cls_score = self(feats, label_target)

        # compute loss
        losses = dict()
        loss = self.loss_module(
            cls_score, target, avg_factor=cls_score.size(0), **kwargs)
        losses['loss'] = loss

        return losses