Spaces:
Runtime error
Runtime error
File size: 11,455 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import List, Optional, Sequence, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.fileio import list_from_file
from mmengine.runner import autocast
from mmengine.utils import is_seq_of
from mmcls.models.losses import convert_to_one_hot
from mmcls.registry import MODELS
from mmcls.structures import ClsDataSample
from .cls_head import ClsHead
class NormProduct(nn.Linear):
"""An enhanced linear layer with k clustering centers to calculate product
between normalized input and linear weight.
Args:
in_features (int): size of each input sample.
out_features (int): size of each output sample
k (int): The number of clustering centers. Defaults to 1.
bias (bool): Whether there is bias. If set to ``False``, the
layer will not learn an additive bias. Defaults to ``True``.
feature_norm (bool): Whether to normalize the input feature.
Defaults to ``True``.
weight_norm (bool):Whether to normalize the weight.
Defaults to ``True``.
"""
def __init__(self,
in_features: int,
out_features: int,
k=1,
bias: bool = False,
feature_norm: bool = True,
weight_norm: bool = True):
super().__init__(in_features, out_features * k, bias=bias)
self.weight_norm = weight_norm
self.feature_norm = feature_norm
self.out_features = out_features
self.k = k
def forward(self, input: torch.Tensor) -> torch.Tensor:
if self.feature_norm:
input = F.normalize(input)
if self.weight_norm:
weight = F.normalize(self.weight)
else:
weight = self.weight
cosine_all = F.linear(input, weight, self.bias)
if self.k == 1:
return cosine_all
else:
cosine_all = cosine_all.view(-1, self.out_features, self.k)
cosine, _ = torch.max(cosine_all, dim=2)
return cosine
@MODELS.register_module()
class ArcFaceClsHead(ClsHead):
"""ArcFace classifier head.
A PyTorch implementation of paper `ArcFace: Additive Angular Margin Loss
for Deep Face Recognition <https://arxiv.org/abs/1801.07698>`_ and
`Sub-center ArcFace: Boosting Face Recognition by Large-Scale Noisy Web
Faces <https://link.springer.com/chapter/10.1007/978-3-030-58621-8_43>`_
Example:
To use ArcFace in config files.
1. use vanilla ArcFace
.. code:: python
mode = dict(
backbone = xxx,
neck = xxxx,
head=dict(
type='ArcFaceClsHead',
num_classes=5000,
in_channels=1024,
loss = dict(type='CrossEntropyLoss', loss_weight=1.0),
init_cfg=None),
)
2. use SubCenterArcFace with 3 sub-centers
.. code:: python
mode = dict(
backbone = xxx,
neck = xxxx,
head=dict(
type='ArcFaceClsHead',
num_classes=5000,
in_channels=1024,
num_subcenters=3,
loss = dict(type='CrossEntropyLoss', loss_weight=1.0),
init_cfg=None),
)
3. use SubCenterArcFace With CountPowerAdaptiveMargins
.. code:: python
mode = dict(
backbone = xxx,
neck = xxxx,
head=dict(
type='ArcFaceClsHead',
num_classes=5000,
in_channels=1024,
num_subcenters=3,
loss = dict(type='CrossEntropyLoss', loss_weight=1.0),
init_cfg=None),
)
custom_hooks = [dict(type='SetAdaptiveMarginsHook')]
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
num_subcenters (int): Number of subcenters. Defaults to 1.
scale (float): Scale factor of output logit. Defaults to 64.0.
margins (float): The penalty margin. Could be the fllowing formats:
- float: The margin, would be same for all the categories.
- Sequence[float]: The category-based margins list.
- str: A '.txt' file path which contains a list. Each line
represents the margin of a category, and the number in the
i-th row indicates the margin of the i-th class.
Defaults to 0.5.
easy_margin (bool): Avoid theta + m >= PI. Defaults to False.
loss (dict): Config of classification loss. Defaults to
``dict(type='CrossEntropyLoss', loss_weight=1.0)``.
init_cfg (dict, optional): the config to control the initialization.
Defaults to None.
"""
def __init__(self,
num_classes: int,
in_channels: int,
num_subcenters: int = 1,
scale: float = 64.,
margins: Optional[Union[float, Sequence[float], str]] = 0.50,
easy_margin: bool = False,
loss: dict = dict(type='CrossEntropyLoss', loss_weight=1.0),
init_cfg: Optional[dict] = None):
super(ArcFaceClsHead, self).__init__(init_cfg=init_cfg)
if not isinstance(loss, nn.Module):
loss = MODELS.build(loss)
self.loss_module = loss
assert num_subcenters >= 1 and num_classes >= 0
self.in_channels = in_channels
self.num_classes = num_classes
self.num_subcenters = num_subcenters
self.scale = scale
self.easy_margin = easy_margin
self.norm_product = NormProduct(in_channels, num_classes,
num_subcenters)
if isinstance(margins, float):
margins = [margins] * num_classes
elif isinstance(margins, str) and margins.endswith('.txt'):
margins = [float(item) for item in list_from_file(margins)]
else:
assert is_seq_of(list(margins), (float, int)), (
'the attribute `margins` in ``ArcFaceClsHead`` should be a '
' float, a Sequence of float, or a ".txt" file path.')
assert len(margins) == num_classes, \
'The length of margins must be equal with num_classes.'
self.register_buffer(
'margins', torch.tensor(margins).float(), persistent=False)
# To make `phi` monotonic decreasing, refers to
# https://github.com/deepinsight/insightface/issues/108
sinm_m = torch.sin(math.pi - self.margins) * self.margins
threshold = torch.cos(math.pi - self.margins)
self.register_buffer('sinm_m', sinm_m, persistent=False)
self.register_buffer('threshold', threshold, persistent=False)
def set_margins(self, margins: Union[Sequence[float], float]) -> None:
"""set margins of arcface head.
Args:
margins (Union[Sequence[float], float]): The marigins.
"""
if isinstance(margins, float):
margins = [margins] * self.num_classes
assert is_seq_of(
list(margins), float) and (len(margins) == self.num_classes), (
f'margins must be Sequence[Union(float, int)], get {margins}')
self.margins = torch.tensor(
margins, device=self.margins.device, dtype=torch.float32)
self.sinm_m = torch.sin(self.margins) * self.margins
self.threshold = -torch.cos(self.margins)
def pre_logits(self, feats: Tuple[torch.Tensor]) -> torch.Tensor:
"""The process before the final classification head.
The input ``feats`` is a tuple of tensor, and each tensor is the
feature of a backbone stage. In ``ArcFaceHead``, we just obtain the
feature of the last stage.
"""
# The ArcFaceHead doesn't have other module, just return after
# unpacking.
return feats[-1]
def _get_logit_with_margin(self, pre_logits, target):
"""add arc margin to the cosine in target index.
The target must be in index format.
"""
assert target.dim() == 1 or (
target.dim() == 2 and target.shape[1] == 1), \
'The target must be in index format.'
cosine = self.norm_product(pre_logits)
phi = torch.cos(torch.acos(cosine) + self.margins)
if self.easy_margin:
# when cosine>0, choose phi
# when cosine<=0, choose cosine
phi = torch.where(cosine > 0, phi, cosine)
else:
# when cos>th, choose phi
# when cos<=th, choose cosine-mm
phi = torch.where(cosine > self.threshold, phi,
cosine - self.sinm_m)
target = convert_to_one_hot(target, self.num_classes)
output = target * phi + (1 - target) * cosine
return output
def forward(self,
feats: Tuple[torch.Tensor],
target: Optional[torch.Tensor] = None) -> torch.Tensor:
"""The forward process."""
# Disable AMP
with autocast(enabled=False):
pre_logits = self.pre_logits(feats)
if target is None:
# when eval, logit is the cosine between W and pre_logits;
# cos(theta_yj) = (x/||x||) * (W/||W||)
logit = self.norm_product(pre_logits)
else:
# when training, add a margin to the pre_logits where target is
# True, then logit is the cosine between W and new pre_logits
logit = self._get_logit_with_margin(pre_logits, target)
return self.scale * logit
def loss(self, feats: Tuple[torch.Tensor],
data_samples: List[ClsDataSample], **kwargs) -> dict:
"""Calculate losses from the classification score.
Args:
feats (tuple[Tensor]): The features extracted from the backbone.
Multiple stage inputs are acceptable but only the last stage
will be used to classify. The shape of every item should be
``(num_samples, num_classes)``.
data_samples (List[ClsDataSample]): The annotation data of
every samples.
**kwargs: Other keyword arguments to forward the loss module.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
# Unpack data samples and pack targets
label_target = torch.cat([i.gt_label.label for i in data_samples])
if 'score' in data_samples[0].gt_label:
# Batch augmentation may convert labels to one-hot format scores.
target = torch.stack([i.gt_label.score for i in data_samples])
else:
# change the labels to to one-hot format scores.
target = label_target
# the index format target would be used
cls_score = self(feats, label_target)
# compute loss
losses = dict()
loss = self.loss_module(
cls_score, target, avg_factor=cls_score.size(0), **kwargs)
losses['loss'] = loss
return losses
|