Spaces:
Runtime error
Runtime error
File size: 14,525 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
import torch
import torch.nn as nn
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.transformer import FFN, MultiheadAttention
from mmengine.model import BaseModule, ModuleList
from mmengine.model.weight_init import trunc_normal_
from mmcls.registry import MODELS
from ..utils import to_2tuple
from .base_backbone import BaseBackbone
class TransformerBlock(BaseModule):
"""Implement a transformer block in TnTLayer.
Args:
embed_dims (int): The feature dimension
num_heads (int): Parallel attention heads
ffn_ratio (int): A ratio to calculate the hidden_dims in ffn layer.
Default: 4
drop_rate (float): Probability of an element to be zeroed
after the feed forward layer. Default 0.
attn_drop_rate (float): The drop out rate for attention layer.
Default 0.
drop_path_rate (float): stochastic depth rate. Default 0.
num_fcs (int): The number of fully-connected layers for FFNs. Default 2
qkv_bias (bool): Enable bias for qkv if True. Default False
act_cfg (dict): The activation config for FFNs. Defaults to GELU.
norm_cfg (dict): Config dict for normalization layer. Default
layer normalization
batch_first (bool): Key, Query and Value are shape of
(batch, n, embed_dim) or (n, batch, embed_dim).
(batch, n, embed_dim) is common case in CV. Defaults to False
init_cfg (dict, optional): Initialization config dict. Defaults to None
"""
def __init__(self,
embed_dims,
num_heads,
ffn_ratio=4,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
num_fcs=2,
qkv_bias=False,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='LN'),
batch_first=True,
init_cfg=None):
super(TransformerBlock, self).__init__(init_cfg=init_cfg)
self.norm_attn = build_norm_layer(norm_cfg, embed_dims)[1]
self.attn = MultiheadAttention(
embed_dims=embed_dims,
num_heads=num_heads,
attn_drop=attn_drop_rate,
proj_drop=drop_rate,
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
batch_first=batch_first)
self.norm_ffn = build_norm_layer(norm_cfg, embed_dims)[1]
self.ffn = FFN(
embed_dims=embed_dims,
feedforward_channels=embed_dims * ffn_ratio,
num_fcs=num_fcs,
ffn_drop=drop_rate,
dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
act_cfg=act_cfg)
if not qkv_bias:
self.attn.attn.in_proj_bias = None
def forward(self, x):
x = self.attn(self.norm_attn(x), identity=x)
x = self.ffn(self.norm_ffn(x), identity=x)
return x
class TnTLayer(BaseModule):
"""Implement one encoder layer in Transformer in Transformer.
Args:
num_pixel (int): The pixel number in target patch transformed with
a linear projection in inner transformer
embed_dims_inner (int): Feature dimension in inner transformer block
embed_dims_outer (int): Feature dimension in outer transformer block
num_heads_inner (int): Parallel attention heads in inner transformer.
num_heads_outer (int): Parallel attention heads in outer transformer.
inner_block_cfg (dict): Extra config of inner transformer block.
Defaults to empty dict.
outer_block_cfg (dict): Extra config of outer transformer block.
Defaults to empty dict.
norm_cfg (dict): Config dict for normalization layer. Default
layer normalization
init_cfg (dict, optional): Initialization config dict. Defaults to None
"""
def __init__(self,
num_pixel,
embed_dims_inner,
embed_dims_outer,
num_heads_inner,
num_heads_outer,
inner_block_cfg=dict(),
outer_block_cfg=dict(),
norm_cfg=dict(type='LN'),
init_cfg=None):
super(TnTLayer, self).__init__(init_cfg=init_cfg)
self.inner_block = TransformerBlock(
embed_dims=embed_dims_inner,
num_heads=num_heads_inner,
**inner_block_cfg)
self.norm_proj = build_norm_layer(norm_cfg, embed_dims_inner)[1]
self.projection = nn.Linear(
embed_dims_inner * num_pixel, embed_dims_outer, bias=True)
self.outer_block = TransformerBlock(
embed_dims=embed_dims_outer,
num_heads=num_heads_outer,
**outer_block_cfg)
def forward(self, pixel_embed, patch_embed):
pixel_embed = self.inner_block(pixel_embed)
B, N, C = patch_embed.size()
patch_embed[:, 1:] = patch_embed[:, 1:] + self.projection(
self.norm_proj(pixel_embed).reshape(B, N - 1, -1))
patch_embed = self.outer_block(patch_embed)
return pixel_embed, patch_embed
class PixelEmbed(BaseModule):
"""Image to Pixel Embedding.
Args:
img_size (int | tuple): The size of input image
patch_size (int): The size of one patch
in_channels (int): The num of input channels
embed_dims_inner (int): The num of channels of the target patch
transformed with a linear projection in inner transformer
stride (int): The stride of the conv2d layer. We use a conv2d layer
and a unfold layer to implement image to pixel embedding.
init_cfg (dict, optional): Initialization config dict
"""
def __init__(self,
img_size=224,
patch_size=16,
in_channels=3,
embed_dims_inner=48,
stride=4,
init_cfg=None):
super(PixelEmbed, self).__init__(init_cfg=init_cfg)
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
# patches_resolution property necessary for resizing
# positional embedding
patches_resolution = [
img_size[0] // patch_size[0], img_size[1] // patch_size[1]
]
num_patches = patches_resolution[0] * patches_resolution[1]
self.img_size = img_size
self.num_patches = num_patches
self.embed_dims_inner = embed_dims_inner
new_patch_size = [math.ceil(ps / stride) for ps in patch_size]
self.new_patch_size = new_patch_size
self.proj = nn.Conv2d(
in_channels,
self.embed_dims_inner,
kernel_size=7,
padding=3,
stride=stride)
self.unfold = nn.Unfold(
kernel_size=new_patch_size, stride=new_patch_size)
def forward(self, x, pixel_pos):
B, C, H, W = x.shape
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model " \
f'({self.img_size[0]}*{self.img_size[1]}).'
x = self.proj(x)
x = self.unfold(x)
x = x.transpose(1,
2).reshape(B * self.num_patches, self.embed_dims_inner,
self.new_patch_size[0],
self.new_patch_size[1])
x = x + pixel_pos
x = x.reshape(B * self.num_patches, self.embed_dims_inner,
-1).transpose(1, 2)
return x
@MODELS.register_module()
class TNT(BaseBackbone):
"""Transformer in Transformer.
A PyTorch implement of: `Transformer in Transformer
<https://arxiv.org/abs/2103.00112>`_
Inspiration from
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/tnt.py
Args:
arch (str | dict): Vision Transformer architecture
Default: 'b'
img_size (int | tuple): Input image size. Defaults to 224
patch_size (int | tuple): The patch size. Deault to 16
in_channels (int): Number of input channels. Defaults to 3
ffn_ratio (int): A ratio to calculate the hidden_dims in ffn layer.
Default: 4
qkv_bias (bool): Enable bias for qkv if True. Default False
drop_rate (float): Probability of an element to be zeroed
after the feed forward layer. Default 0.
attn_drop_rate (float): The drop out rate for attention layer.
Default 0.
drop_path_rate (float): stochastic depth rate. Default 0.
act_cfg (dict): The activation config for FFNs. Defaults to GELU.
norm_cfg (dict): Config dict for normalization layer. Default
layer normalization
first_stride (int): The stride of the conv2d layer. We use a conv2d
layer and a unfold layer to implement image to pixel embedding.
num_fcs (int): The number of fully-connected layers for FFNs. Default 2
init_cfg (dict, optional): Initialization config dict
"""
arch_zoo = {
**dict.fromkeys(
['s', 'small'], {
'embed_dims_outer': 384,
'embed_dims_inner': 24,
'num_layers': 12,
'num_heads_outer': 6,
'num_heads_inner': 4
}),
**dict.fromkeys(
['b', 'base'], {
'embed_dims_outer': 640,
'embed_dims_inner': 40,
'num_layers': 12,
'num_heads_outer': 10,
'num_heads_inner': 4
})
}
def __init__(self,
arch='b',
img_size=224,
patch_size=16,
in_channels=3,
ffn_ratio=4,
qkv_bias=False,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='LN'),
first_stride=4,
num_fcs=2,
init_cfg=[
dict(type='TruncNormal', layer='Linear', std=.02),
dict(type='Constant', layer='LayerNorm', val=1., bias=0.)
]):
super(TNT, self).__init__(init_cfg=init_cfg)
if isinstance(arch, str):
arch = arch.lower()
assert arch in set(self.arch_zoo), \
f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
self.arch_settings = self.arch_zoo[arch]
else:
essential_keys = {
'embed_dims_outer', 'embed_dims_inner', 'num_layers',
'num_heads_inner', 'num_heads_outer'
}
assert isinstance(arch, dict) and set(arch) == essential_keys, \
f'Custom arch needs a dict with keys {essential_keys}'
self.arch_settings = arch
self.embed_dims_inner = self.arch_settings['embed_dims_inner']
self.embed_dims_outer = self.arch_settings['embed_dims_outer']
# embed_dims for consistency with other models
self.embed_dims = self.embed_dims_outer
self.num_layers = self.arch_settings['num_layers']
self.num_heads_inner = self.arch_settings['num_heads_inner']
self.num_heads_outer = self.arch_settings['num_heads_outer']
self.pixel_embed = PixelEmbed(
img_size=img_size,
patch_size=patch_size,
in_channels=in_channels,
embed_dims_inner=self.embed_dims_inner,
stride=first_stride)
num_patches = self.pixel_embed.num_patches
self.num_patches = num_patches
new_patch_size = self.pixel_embed.new_patch_size
num_pixel = new_patch_size[0] * new_patch_size[1]
self.norm1_proj = build_norm_layer(norm_cfg, num_pixel *
self.embed_dims_inner)[1]
self.projection = nn.Linear(num_pixel * self.embed_dims_inner,
self.embed_dims_outer)
self.norm2_proj = build_norm_layer(norm_cfg, self.embed_dims_outer)[1]
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dims_outer))
self.patch_pos = nn.Parameter(
torch.zeros(1, num_patches + 1, self.embed_dims_outer))
self.pixel_pos = nn.Parameter(
torch.zeros(1, self.embed_dims_inner, new_patch_size[0],
new_patch_size[1]))
self.drop_after_pos = nn.Dropout(p=drop_rate)
dpr = [
x.item()
for x in torch.linspace(0, drop_path_rate, self.num_layers)
] # stochastic depth decay rule
self.layers = ModuleList()
for i in range(self.num_layers):
block_cfg = dict(
ffn_ratio=ffn_ratio,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=dpr[i],
num_fcs=num_fcs,
qkv_bias=qkv_bias,
norm_cfg=norm_cfg,
batch_first=True)
self.layers.append(
TnTLayer(
num_pixel=num_pixel,
embed_dims_inner=self.embed_dims_inner,
embed_dims_outer=self.embed_dims_outer,
num_heads_inner=self.num_heads_inner,
num_heads_outer=self.num_heads_outer,
inner_block_cfg=block_cfg,
outer_block_cfg=block_cfg,
norm_cfg=norm_cfg))
self.norm = build_norm_layer(norm_cfg, self.embed_dims_outer)[1]
trunc_normal_(self.cls_token, std=.02)
trunc_normal_(self.patch_pos, std=.02)
trunc_normal_(self.pixel_pos, std=.02)
def forward(self, x):
B = x.shape[0]
pixel_embed = self.pixel_embed(x, self.pixel_pos)
patch_embed = self.norm2_proj(
self.projection(
self.norm1_proj(pixel_embed.reshape(B, self.num_patches, -1))))
patch_embed = torch.cat(
(self.cls_token.expand(B, -1, -1), patch_embed), dim=1)
patch_embed = patch_embed + self.patch_pos
patch_embed = self.drop_after_pos(patch_embed)
for layer in self.layers:
pixel_embed, patch_embed = layer(pixel_embed, patch_embed)
patch_embed = self.norm(patch_embed)
return (patch_embed[:, 0], )
|