File size: 22,307 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
# Copyright (c) OpenMMLab. All rights reserved.
from copy import deepcopy
from typing import Sequence

import numpy as np
import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.transformer import FFN, PatchEmbed, PatchMerging
from mmengine.model import BaseModule, ModuleList
from mmengine.model.weight_init import trunc_normal_
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm

from mmcls.registry import MODELS
from ..utils import (ShiftWindowMSA, resize_pos_embed,
                     resize_relative_position_bias_table, to_2tuple)
from .base_backbone import BaseBackbone


class SwinBlock(BaseModule):
    """Swin Transformer block.

    Args:
        embed_dims (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (int): The height and width of the window. Defaults to 7.
        shift (bool): Shift the attention window or not. Defaults to False.
        ffn_ratio (float): The expansion ratio of feedforward network hidden
            layer channels. Defaults to 4.
        drop_path (float): The drop path rate after attention and ffn.
            Defaults to 0.
        pad_small_map (bool): If True, pad the small feature map to the window
            size, which is common used in detection and segmentation. If False,
            avoid shifting window and shrink the window size to the size of
            feature map, which is common used in classification.
            Defaults to False.
        attn_cfgs (dict): The extra config of Shift Window-MSA.
            Defaults to empty dict.
        ffn_cfgs (dict): The extra config of FFN. Defaults to empty dict.
        norm_cfg (dict): The config of norm layers.
            Defaults to ``dict(type='LN')``.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Defaults to False.
        init_cfg (dict, optional): The extra config for initialization.
            Defaults to None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 window_size=7,
                 shift=False,
                 ffn_ratio=4.,
                 drop_path=0.,
                 pad_small_map=False,
                 attn_cfgs=dict(),
                 ffn_cfgs=dict(),
                 norm_cfg=dict(type='LN'),
                 with_cp=False,
                 init_cfg=None):

        super(SwinBlock, self).__init__(init_cfg)
        self.with_cp = with_cp

        _attn_cfgs = {
            'embed_dims': embed_dims,
            'num_heads': num_heads,
            'shift_size': window_size // 2 if shift else 0,
            'window_size': window_size,
            'dropout_layer': dict(type='DropPath', drop_prob=drop_path),
            'pad_small_map': pad_small_map,
            **attn_cfgs
        }
        self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1]
        self.attn = ShiftWindowMSA(**_attn_cfgs)

        _ffn_cfgs = {
            'embed_dims': embed_dims,
            'feedforward_channels': int(embed_dims * ffn_ratio),
            'num_fcs': 2,
            'ffn_drop': 0,
            'dropout_layer': dict(type='DropPath', drop_prob=drop_path),
            'act_cfg': dict(type='GELU'),
            **ffn_cfgs
        }
        self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1]
        self.ffn = FFN(**_ffn_cfgs)

    def forward(self, x, hw_shape):

        def _inner_forward(x):
            identity = x
            x = self.norm1(x)
            x = self.attn(x, hw_shape)
            x = x + identity

            identity = x
            x = self.norm2(x)
            x = self.ffn(x, identity=identity)

            return x

        if self.with_cp and x.requires_grad:
            x = cp.checkpoint(_inner_forward, x)
        else:
            x = _inner_forward(x)

        return x


class SwinBlockSequence(BaseModule):
    """Module with successive Swin Transformer blocks and downsample layer.

    Args:
        embed_dims (int): Number of input channels.
        depth (int): Number of successive swin transformer blocks.
        num_heads (int): Number of attention heads.
        window_size (int): The height and width of the window. Defaults to 7.
        downsample (bool): Downsample the output of blocks by patch merging.
            Defaults to False.
        downsample_cfg (dict): The extra config of the patch merging layer.
            Defaults to empty dict.
        drop_paths (Sequence[float] | float): The drop path rate in each block.
            Defaults to 0.
        block_cfgs (Sequence[dict] | dict): The extra config of each block.
            Defaults to empty dicts.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Defaults to False.
        pad_small_map (bool): If True, pad the small feature map to the window
            size, which is common used in detection and segmentation. If False,
            avoid shifting window and shrink the window size to the size of
            feature map, which is common used in classification.
            Defaults to False.
        init_cfg (dict, optional): The extra config for initialization.
            Defaults to None.
    """

    def __init__(self,
                 embed_dims,
                 depth,
                 num_heads,
                 window_size=7,
                 downsample=False,
                 downsample_cfg=dict(),
                 drop_paths=0.,
                 block_cfgs=dict(),
                 with_cp=False,
                 pad_small_map=False,
                 init_cfg=None):
        super().__init__(init_cfg)

        if not isinstance(drop_paths, Sequence):
            drop_paths = [drop_paths] * depth

        if not isinstance(block_cfgs, Sequence):
            block_cfgs = [deepcopy(block_cfgs) for _ in range(depth)]

        self.embed_dims = embed_dims
        self.blocks = ModuleList()
        for i in range(depth):
            _block_cfg = {
                'embed_dims': embed_dims,
                'num_heads': num_heads,
                'window_size': window_size,
                'shift': False if i % 2 == 0 else True,
                'drop_path': drop_paths[i],
                'with_cp': with_cp,
                'pad_small_map': pad_small_map,
                **block_cfgs[i]
            }
            block = SwinBlock(**_block_cfg)
            self.blocks.append(block)

        if downsample:
            _downsample_cfg = {
                'in_channels': embed_dims,
                'out_channels': 2 * embed_dims,
                'norm_cfg': dict(type='LN'),
                **downsample_cfg
            }
            self.downsample = PatchMerging(**_downsample_cfg)
        else:
            self.downsample = None

    def forward(self, x, in_shape, do_downsample=True):
        for block in self.blocks:
            x = block(x, in_shape)

        if self.downsample is not None and do_downsample:
            x, out_shape = self.downsample(x, in_shape)
        else:
            out_shape = in_shape
        return x, out_shape

    @property
    def out_channels(self):
        if self.downsample:
            return self.downsample.out_channels
        else:
            return self.embed_dims


@MODELS.register_module()
class SwinTransformer(BaseBackbone):
    """Swin Transformer.

    A PyTorch implement of : `Swin Transformer:
    Hierarchical Vision Transformer using Shifted Windows
    <https://arxiv.org/abs/2103.14030>`_

    Inspiration from
    https://github.com/microsoft/Swin-Transformer

    Args:
        arch (str | dict): Swin Transformer architecture. If use string, choose
            from 'tiny', 'small', 'base' and 'large'. If use dict, it should
            have below keys:

            - **embed_dims** (int): The dimensions of embedding.
            - **depths** (List[int]): The number of blocks in each stage.
            - **num_heads** (List[int]): The number of heads in attention
              modules of each stage.

            Defaults to 'tiny'.
        img_size (int | tuple): The expected input image shape. Because we
            support dynamic input shape, just set the argument to the most
            common input image shape. Defaults to 224.
        patch_size (int | tuple): The patch size in patch embedding.
            Defaults to 4.
        in_channels (int): The num of input channels. Defaults to 3.
        window_size (int): The height and width of the window. Defaults to 7.
        drop_rate (float): Dropout rate after embedding. Defaults to 0.
        drop_path_rate (float): Stochastic depth rate. Defaults to 0.1.
        out_after_downsample (bool): Whether to output the feature map of a
            stage after the following downsample layer. Defaults to False.
        use_abs_pos_embed (bool): If True, add absolute position embedding to
            the patch embedding. Defaults to False.
        interpolate_mode (str): Select the interpolate mode for absolute
            position embeding vector resize. Defaults to "bicubic".
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Defaults to False.
        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
            -1 means not freezing any parameters. Defaults to -1.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Defaults to False.
        pad_small_map (bool): If True, pad the small feature map to the window
            size, which is common used in detection and segmentation. If False,
            avoid shifting window and shrink the window size to the size of
            feature map, which is common used in classification.
            Defaults to False.
        norm_cfg (dict): Config dict for normalization layer for all output
            features. Defaults to ``dict(type='LN')``
        stage_cfgs (Sequence[dict] | dict): Extra config dict for each
            stage. Defaults to an empty dict.
        patch_cfg (dict): Extra config dict for patch embedding.
            Defaults to an empty dict.
        init_cfg (dict, optional): The Config for initialization.
            Defaults to None.

    Examples:
        >>> from mmcls.models import SwinTransformer
        >>> import torch
        >>> extra_config = dict(
        >>>     arch='tiny',
        >>>     stage_cfgs=dict(downsample_cfg={'kernel_size': 3,
        >>>                                     'expansion_ratio': 3}))
        >>> self = SwinTransformer(**extra_config)
        >>> inputs = torch.rand(1, 3, 224, 224)
        >>> output = self.forward(inputs)
        >>> print(output.shape)
        (1, 2592, 4)
    """
    arch_zoo = {
        **dict.fromkeys(['t', 'tiny'],
                        {'embed_dims': 96,
                         'depths':     [2, 2,  6,  2],
                         'num_heads':  [3, 6, 12, 24]}),
        **dict.fromkeys(['s', 'small'],
                        {'embed_dims': 96,
                         'depths':     [2, 2, 18,  2],
                         'num_heads':  [3, 6, 12, 24]}),
        **dict.fromkeys(['b', 'base'],
                        {'embed_dims': 128,
                         'depths':     [2, 2, 18,  2],
                         'num_heads':  [4, 8, 16, 32]}),
        **dict.fromkeys(['l', 'large'],
                        {'embed_dims': 192,
                         'depths':     [2,  2, 18,  2],
                         'num_heads':  [6, 12, 24, 48]}),
    }  # yapf: disable

    _version = 3
    num_extra_tokens = 0

    def __init__(self,
                 arch='tiny',
                 img_size=224,
                 patch_size=4,
                 in_channels=3,
                 window_size=7,
                 drop_rate=0.,
                 drop_path_rate=0.1,
                 out_indices=(3, ),
                 out_after_downsample=False,
                 use_abs_pos_embed=False,
                 interpolate_mode='bicubic',
                 with_cp=False,
                 frozen_stages=-1,
                 norm_eval=False,
                 pad_small_map=False,
                 norm_cfg=dict(type='LN'),
                 stage_cfgs=dict(),
                 patch_cfg=dict(),
                 init_cfg=None):
        super(SwinTransformer, self).__init__(init_cfg=init_cfg)

        if isinstance(arch, str):
            arch = arch.lower()
            assert arch in set(self.arch_zoo), \
                f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
            self.arch_settings = self.arch_zoo[arch]
        else:
            essential_keys = {'embed_dims', 'depths', 'num_heads'}
            assert isinstance(arch, dict) and set(arch) == essential_keys, \
                f'Custom arch needs a dict with keys {essential_keys}'
            self.arch_settings = arch

        self.embed_dims = self.arch_settings['embed_dims']
        self.depths = self.arch_settings['depths']
        self.num_heads = self.arch_settings['num_heads']
        self.num_layers = len(self.depths)
        self.out_indices = out_indices
        self.out_after_downsample = out_after_downsample
        self.use_abs_pos_embed = use_abs_pos_embed
        self.interpolate_mode = interpolate_mode
        self.frozen_stages = frozen_stages

        _patch_cfg = dict(
            in_channels=in_channels,
            input_size=img_size,
            embed_dims=self.embed_dims,
            conv_type='Conv2d',
            kernel_size=patch_size,
            stride=patch_size,
            norm_cfg=dict(type='LN'),
        )
        _patch_cfg.update(patch_cfg)
        self.patch_embed = PatchEmbed(**_patch_cfg)
        self.patch_resolution = self.patch_embed.init_out_size

        if self.use_abs_pos_embed:
            num_patches = self.patch_resolution[0] * self.patch_resolution[1]
            self.absolute_pos_embed = nn.Parameter(
                torch.zeros(1, num_patches, self.embed_dims))
            self._register_load_state_dict_pre_hook(
                self._prepare_abs_pos_embed)

        self._register_load_state_dict_pre_hook(
            self._prepare_relative_position_bias_table)

        self.drop_after_pos = nn.Dropout(p=drop_rate)
        self.norm_eval = norm_eval

        # stochastic depth
        total_depth = sum(self.depths)
        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, total_depth)
        ]  # stochastic depth decay rule

        self.stages = ModuleList()
        embed_dims = [self.embed_dims]
        for i, (depth,
                num_heads) in enumerate(zip(self.depths, self.num_heads)):
            if isinstance(stage_cfgs, Sequence):
                stage_cfg = stage_cfgs[i]
            else:
                stage_cfg = deepcopy(stage_cfgs)
            downsample = True if i < self.num_layers - 1 else False
            _stage_cfg = {
                'embed_dims': embed_dims[-1],
                'depth': depth,
                'num_heads': num_heads,
                'window_size': window_size,
                'downsample': downsample,
                'drop_paths': dpr[:depth],
                'with_cp': with_cp,
                'pad_small_map': pad_small_map,
                **stage_cfg
            }

            stage = SwinBlockSequence(**_stage_cfg)
            self.stages.append(stage)

            dpr = dpr[depth:]
            embed_dims.append(stage.out_channels)

        if self.out_after_downsample:
            self.num_features = embed_dims[1:]
        else:
            self.num_features = embed_dims[:-1]

        for i in out_indices:
            if norm_cfg is not None:
                norm_layer = build_norm_layer(norm_cfg,
                                              self.num_features[i])[1]
            else:
                norm_layer = nn.Identity()

            self.add_module(f'norm{i}', norm_layer)

    def init_weights(self):
        super(SwinTransformer, self).init_weights()

        if (isinstance(self.init_cfg, dict)
                and self.init_cfg['type'] == 'Pretrained'):
            # Suppress default init if use pretrained model.
            return

        if self.use_abs_pos_embed:
            trunc_normal_(self.absolute_pos_embed, std=0.02)

    def forward(self, x):
        x, hw_shape = self.patch_embed(x)
        if self.use_abs_pos_embed:
            x = x + resize_pos_embed(
                self.absolute_pos_embed, self.patch_resolution, hw_shape,
                self.interpolate_mode, self.num_extra_tokens)
        x = self.drop_after_pos(x)

        outs = []
        for i, stage in enumerate(self.stages):
            x, hw_shape = stage(
                x, hw_shape, do_downsample=self.out_after_downsample)
            if i in self.out_indices:
                norm_layer = getattr(self, f'norm{i}')
                out = norm_layer(x)
                out = out.view(-1, *hw_shape,
                               self.num_features[i]).permute(0, 3, 1,
                                                             2).contiguous()
                outs.append(out)
            if stage.downsample is not None and not self.out_after_downsample:
                x, hw_shape = stage.downsample(x, hw_shape)

        return tuple(outs)

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, *args,
                              **kwargs):
        """load checkpoints."""
        # Names of some parameters in has been changed.
        version = local_metadata.get('version', None)
        if (version is None
                or version < 2) and self.__class__ is SwinTransformer:
            final_stage_num = len(self.stages) - 1
            state_dict_keys = list(state_dict.keys())
            for k in state_dict_keys:
                if k.startswith('norm.') or k.startswith('backbone.norm.'):
                    convert_key = k.replace('norm.', f'norm{final_stage_num}.')
                    state_dict[convert_key] = state_dict[k]
                    del state_dict[k]
        if (version is None
                or version < 3) and self.__class__ is SwinTransformer:
            state_dict_keys = list(state_dict.keys())
            for k in state_dict_keys:
                if 'attn_mask' in k:
                    del state_dict[k]

        super()._load_from_state_dict(state_dict, prefix, local_metadata,
                                      *args, **kwargs)

    def _freeze_stages(self):
        if self.frozen_stages >= 0:
            self.patch_embed.eval()
            for param in self.patch_embed.parameters():
                param.requires_grad = False

        for i in range(0, self.frozen_stages + 1):
            m = self.stages[i]
            m.eval()
            for param in m.parameters():
                param.requires_grad = False
        for i in self.out_indices:
            if i <= self.frozen_stages:
                for param in getattr(self, f'norm{i}').parameters():
                    param.requires_grad = False

    def train(self, mode=True):
        super(SwinTransformer, self).train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            for m in self.modules():
                # trick: eval have effect on BatchNorm only
                if isinstance(m, _BatchNorm):
                    m.eval()

    def _prepare_abs_pos_embed(self, state_dict, prefix, *args, **kwargs):
        name = prefix + 'absolute_pos_embed'
        if name not in state_dict.keys():
            return

        ckpt_pos_embed_shape = state_dict[name].shape
        if self.absolute_pos_embed.shape != ckpt_pos_embed_shape:
            from mmengine.logging import MMLogger
            logger = MMLogger.get_current_instance()
            logger.info(
                'Resize the absolute_pos_embed shape from '
                f'{ckpt_pos_embed_shape} to {self.absolute_pos_embed.shape}.')

            ckpt_pos_embed_shape = to_2tuple(
                int(np.sqrt(ckpt_pos_embed_shape[1] - self.num_extra_tokens)))
            pos_embed_shape = self.patch_embed.init_out_size

            state_dict[name] = resize_pos_embed(state_dict[name],
                                                ckpt_pos_embed_shape,
                                                pos_embed_shape,
                                                self.interpolate_mode,
                                                self.num_extra_tokens)

    def _prepare_relative_position_bias_table(self, state_dict, prefix, *args,
                                              **kwargs):
        state_dict_model = self.state_dict()
        all_keys = list(state_dict_model.keys())
        for key in all_keys:
            if 'relative_position_bias_table' in key:
                ckpt_key = prefix + key
                if ckpt_key not in state_dict:
                    continue
                relative_position_bias_table_pretrained = state_dict[ckpt_key]
                relative_position_bias_table_current = state_dict_model[key]
                L1, nH1 = relative_position_bias_table_pretrained.size()
                L2, nH2 = relative_position_bias_table_current.size()
                if L1 != L2:
                    src_size = int(L1**0.5)
                    dst_size = int(L2**0.5)
                    new_rel_pos_bias = resize_relative_position_bias_table(
                        src_size, dst_size,
                        relative_position_bias_table_pretrained, nH1)
                    from mmengine.logging import MMLogger
                    logger = MMLogger.get_current_instance()
                    logger.info('Resize the relative_position_bias_table from '
                                f'{state_dict[ckpt_key].shape} to '
                                f'{new_rel_pos_bias.shape}')
                    state_dict[ckpt_key] = new_rel_pos_bias

                    # The index buffer need to be re-generated.
                    index_buffer = ckpt_key.replace('bias_table', 'index')
                    del state_dict[index_buffer]