Spaces:
Runtime error
Runtime error
File size: 22,307 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 |
# Copyright (c) OpenMMLab. All rights reserved.
from copy import deepcopy
from typing import Sequence
import numpy as np
import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.transformer import FFN, PatchEmbed, PatchMerging
from mmengine.model import BaseModule, ModuleList
from mmengine.model.weight_init import trunc_normal_
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm
from mmcls.registry import MODELS
from ..utils import (ShiftWindowMSA, resize_pos_embed,
resize_relative_position_bias_table, to_2tuple)
from .base_backbone import BaseBackbone
class SwinBlock(BaseModule):
"""Swin Transformer block.
Args:
embed_dims (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (int): The height and width of the window. Defaults to 7.
shift (bool): Shift the attention window or not. Defaults to False.
ffn_ratio (float): The expansion ratio of feedforward network hidden
layer channels. Defaults to 4.
drop_path (float): The drop path rate after attention and ffn.
Defaults to 0.
pad_small_map (bool): If True, pad the small feature map to the window
size, which is common used in detection and segmentation. If False,
avoid shifting window and shrink the window size to the size of
feature map, which is common used in classification.
Defaults to False.
attn_cfgs (dict): The extra config of Shift Window-MSA.
Defaults to empty dict.
ffn_cfgs (dict): The extra config of FFN. Defaults to empty dict.
norm_cfg (dict): The config of norm layers.
Defaults to ``dict(type='LN')``.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
init_cfg (dict, optional): The extra config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
num_heads,
window_size=7,
shift=False,
ffn_ratio=4.,
drop_path=0.,
pad_small_map=False,
attn_cfgs=dict(),
ffn_cfgs=dict(),
norm_cfg=dict(type='LN'),
with_cp=False,
init_cfg=None):
super(SwinBlock, self).__init__(init_cfg)
self.with_cp = with_cp
_attn_cfgs = {
'embed_dims': embed_dims,
'num_heads': num_heads,
'shift_size': window_size // 2 if shift else 0,
'window_size': window_size,
'dropout_layer': dict(type='DropPath', drop_prob=drop_path),
'pad_small_map': pad_small_map,
**attn_cfgs
}
self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1]
self.attn = ShiftWindowMSA(**_attn_cfgs)
_ffn_cfgs = {
'embed_dims': embed_dims,
'feedforward_channels': int(embed_dims * ffn_ratio),
'num_fcs': 2,
'ffn_drop': 0,
'dropout_layer': dict(type='DropPath', drop_prob=drop_path),
'act_cfg': dict(type='GELU'),
**ffn_cfgs
}
self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1]
self.ffn = FFN(**_ffn_cfgs)
def forward(self, x, hw_shape):
def _inner_forward(x):
identity = x
x = self.norm1(x)
x = self.attn(x, hw_shape)
x = x + identity
identity = x
x = self.norm2(x)
x = self.ffn(x, identity=identity)
return x
if self.with_cp and x.requires_grad:
x = cp.checkpoint(_inner_forward, x)
else:
x = _inner_forward(x)
return x
class SwinBlockSequence(BaseModule):
"""Module with successive Swin Transformer blocks and downsample layer.
Args:
embed_dims (int): Number of input channels.
depth (int): Number of successive swin transformer blocks.
num_heads (int): Number of attention heads.
window_size (int): The height and width of the window. Defaults to 7.
downsample (bool): Downsample the output of blocks by patch merging.
Defaults to False.
downsample_cfg (dict): The extra config of the patch merging layer.
Defaults to empty dict.
drop_paths (Sequence[float] | float): The drop path rate in each block.
Defaults to 0.
block_cfgs (Sequence[dict] | dict): The extra config of each block.
Defaults to empty dicts.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
pad_small_map (bool): If True, pad the small feature map to the window
size, which is common used in detection and segmentation. If False,
avoid shifting window and shrink the window size to the size of
feature map, which is common used in classification.
Defaults to False.
init_cfg (dict, optional): The extra config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
depth,
num_heads,
window_size=7,
downsample=False,
downsample_cfg=dict(),
drop_paths=0.,
block_cfgs=dict(),
with_cp=False,
pad_small_map=False,
init_cfg=None):
super().__init__(init_cfg)
if not isinstance(drop_paths, Sequence):
drop_paths = [drop_paths] * depth
if not isinstance(block_cfgs, Sequence):
block_cfgs = [deepcopy(block_cfgs) for _ in range(depth)]
self.embed_dims = embed_dims
self.blocks = ModuleList()
for i in range(depth):
_block_cfg = {
'embed_dims': embed_dims,
'num_heads': num_heads,
'window_size': window_size,
'shift': False if i % 2 == 0 else True,
'drop_path': drop_paths[i],
'with_cp': with_cp,
'pad_small_map': pad_small_map,
**block_cfgs[i]
}
block = SwinBlock(**_block_cfg)
self.blocks.append(block)
if downsample:
_downsample_cfg = {
'in_channels': embed_dims,
'out_channels': 2 * embed_dims,
'norm_cfg': dict(type='LN'),
**downsample_cfg
}
self.downsample = PatchMerging(**_downsample_cfg)
else:
self.downsample = None
def forward(self, x, in_shape, do_downsample=True):
for block in self.blocks:
x = block(x, in_shape)
if self.downsample is not None and do_downsample:
x, out_shape = self.downsample(x, in_shape)
else:
out_shape = in_shape
return x, out_shape
@property
def out_channels(self):
if self.downsample:
return self.downsample.out_channels
else:
return self.embed_dims
@MODELS.register_module()
class SwinTransformer(BaseBackbone):
"""Swin Transformer.
A PyTorch implement of : `Swin Transformer:
Hierarchical Vision Transformer using Shifted Windows
<https://arxiv.org/abs/2103.14030>`_
Inspiration from
https://github.com/microsoft/Swin-Transformer
Args:
arch (str | dict): Swin Transformer architecture. If use string, choose
from 'tiny', 'small', 'base' and 'large'. If use dict, it should
have below keys:
- **embed_dims** (int): The dimensions of embedding.
- **depths** (List[int]): The number of blocks in each stage.
- **num_heads** (List[int]): The number of heads in attention
modules of each stage.
Defaults to 'tiny'.
img_size (int | tuple): The expected input image shape. Because we
support dynamic input shape, just set the argument to the most
common input image shape. Defaults to 224.
patch_size (int | tuple): The patch size in patch embedding.
Defaults to 4.
in_channels (int): The num of input channels. Defaults to 3.
window_size (int): The height and width of the window. Defaults to 7.
drop_rate (float): Dropout rate after embedding. Defaults to 0.
drop_path_rate (float): Stochastic depth rate. Defaults to 0.1.
out_after_downsample (bool): Whether to output the feature map of a
stage after the following downsample layer. Defaults to False.
use_abs_pos_embed (bool): If True, add absolute position embedding to
the patch embedding. Defaults to False.
interpolate_mode (str): Select the interpolate mode for absolute
position embeding vector resize. Defaults to "bicubic".
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Defaults to -1.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Defaults to False.
pad_small_map (bool): If True, pad the small feature map to the window
size, which is common used in detection and segmentation. If False,
avoid shifting window and shrink the window size to the size of
feature map, which is common used in classification.
Defaults to False.
norm_cfg (dict): Config dict for normalization layer for all output
features. Defaults to ``dict(type='LN')``
stage_cfgs (Sequence[dict] | dict): Extra config dict for each
stage. Defaults to an empty dict.
patch_cfg (dict): Extra config dict for patch embedding.
Defaults to an empty dict.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
Examples:
>>> from mmcls.models import SwinTransformer
>>> import torch
>>> extra_config = dict(
>>> arch='tiny',
>>> stage_cfgs=dict(downsample_cfg={'kernel_size': 3,
>>> 'expansion_ratio': 3}))
>>> self = SwinTransformer(**extra_config)
>>> inputs = torch.rand(1, 3, 224, 224)
>>> output = self.forward(inputs)
>>> print(output.shape)
(1, 2592, 4)
"""
arch_zoo = {
**dict.fromkeys(['t', 'tiny'],
{'embed_dims': 96,
'depths': [2, 2, 6, 2],
'num_heads': [3, 6, 12, 24]}),
**dict.fromkeys(['s', 'small'],
{'embed_dims': 96,
'depths': [2, 2, 18, 2],
'num_heads': [3, 6, 12, 24]}),
**dict.fromkeys(['b', 'base'],
{'embed_dims': 128,
'depths': [2, 2, 18, 2],
'num_heads': [4, 8, 16, 32]}),
**dict.fromkeys(['l', 'large'],
{'embed_dims': 192,
'depths': [2, 2, 18, 2],
'num_heads': [6, 12, 24, 48]}),
} # yapf: disable
_version = 3
num_extra_tokens = 0
def __init__(self,
arch='tiny',
img_size=224,
patch_size=4,
in_channels=3,
window_size=7,
drop_rate=0.,
drop_path_rate=0.1,
out_indices=(3, ),
out_after_downsample=False,
use_abs_pos_embed=False,
interpolate_mode='bicubic',
with_cp=False,
frozen_stages=-1,
norm_eval=False,
pad_small_map=False,
norm_cfg=dict(type='LN'),
stage_cfgs=dict(),
patch_cfg=dict(),
init_cfg=None):
super(SwinTransformer, self).__init__(init_cfg=init_cfg)
if isinstance(arch, str):
arch = arch.lower()
assert arch in set(self.arch_zoo), \
f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
self.arch_settings = self.arch_zoo[arch]
else:
essential_keys = {'embed_dims', 'depths', 'num_heads'}
assert isinstance(arch, dict) and set(arch) == essential_keys, \
f'Custom arch needs a dict with keys {essential_keys}'
self.arch_settings = arch
self.embed_dims = self.arch_settings['embed_dims']
self.depths = self.arch_settings['depths']
self.num_heads = self.arch_settings['num_heads']
self.num_layers = len(self.depths)
self.out_indices = out_indices
self.out_after_downsample = out_after_downsample
self.use_abs_pos_embed = use_abs_pos_embed
self.interpolate_mode = interpolate_mode
self.frozen_stages = frozen_stages
_patch_cfg = dict(
in_channels=in_channels,
input_size=img_size,
embed_dims=self.embed_dims,
conv_type='Conv2d',
kernel_size=patch_size,
stride=patch_size,
norm_cfg=dict(type='LN'),
)
_patch_cfg.update(patch_cfg)
self.patch_embed = PatchEmbed(**_patch_cfg)
self.patch_resolution = self.patch_embed.init_out_size
if self.use_abs_pos_embed:
num_patches = self.patch_resolution[0] * self.patch_resolution[1]
self.absolute_pos_embed = nn.Parameter(
torch.zeros(1, num_patches, self.embed_dims))
self._register_load_state_dict_pre_hook(
self._prepare_abs_pos_embed)
self._register_load_state_dict_pre_hook(
self._prepare_relative_position_bias_table)
self.drop_after_pos = nn.Dropout(p=drop_rate)
self.norm_eval = norm_eval
# stochastic depth
total_depth = sum(self.depths)
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, total_depth)
] # stochastic depth decay rule
self.stages = ModuleList()
embed_dims = [self.embed_dims]
for i, (depth,
num_heads) in enumerate(zip(self.depths, self.num_heads)):
if isinstance(stage_cfgs, Sequence):
stage_cfg = stage_cfgs[i]
else:
stage_cfg = deepcopy(stage_cfgs)
downsample = True if i < self.num_layers - 1 else False
_stage_cfg = {
'embed_dims': embed_dims[-1],
'depth': depth,
'num_heads': num_heads,
'window_size': window_size,
'downsample': downsample,
'drop_paths': dpr[:depth],
'with_cp': with_cp,
'pad_small_map': pad_small_map,
**stage_cfg
}
stage = SwinBlockSequence(**_stage_cfg)
self.stages.append(stage)
dpr = dpr[depth:]
embed_dims.append(stage.out_channels)
if self.out_after_downsample:
self.num_features = embed_dims[1:]
else:
self.num_features = embed_dims[:-1]
for i in out_indices:
if norm_cfg is not None:
norm_layer = build_norm_layer(norm_cfg,
self.num_features[i])[1]
else:
norm_layer = nn.Identity()
self.add_module(f'norm{i}', norm_layer)
def init_weights(self):
super(SwinTransformer, self).init_weights()
if (isinstance(self.init_cfg, dict)
and self.init_cfg['type'] == 'Pretrained'):
# Suppress default init if use pretrained model.
return
if self.use_abs_pos_embed:
trunc_normal_(self.absolute_pos_embed, std=0.02)
def forward(self, x):
x, hw_shape = self.patch_embed(x)
if self.use_abs_pos_embed:
x = x + resize_pos_embed(
self.absolute_pos_embed, self.patch_resolution, hw_shape,
self.interpolate_mode, self.num_extra_tokens)
x = self.drop_after_pos(x)
outs = []
for i, stage in enumerate(self.stages):
x, hw_shape = stage(
x, hw_shape, do_downsample=self.out_after_downsample)
if i in self.out_indices:
norm_layer = getattr(self, f'norm{i}')
out = norm_layer(x)
out = out.view(-1, *hw_shape,
self.num_features[i]).permute(0, 3, 1,
2).contiguous()
outs.append(out)
if stage.downsample is not None and not self.out_after_downsample:
x, hw_shape = stage.downsample(x, hw_shape)
return tuple(outs)
def _load_from_state_dict(self, state_dict, prefix, local_metadata, *args,
**kwargs):
"""load checkpoints."""
# Names of some parameters in has been changed.
version = local_metadata.get('version', None)
if (version is None
or version < 2) and self.__class__ is SwinTransformer:
final_stage_num = len(self.stages) - 1
state_dict_keys = list(state_dict.keys())
for k in state_dict_keys:
if k.startswith('norm.') or k.startswith('backbone.norm.'):
convert_key = k.replace('norm.', f'norm{final_stage_num}.')
state_dict[convert_key] = state_dict[k]
del state_dict[k]
if (version is None
or version < 3) and self.__class__ is SwinTransformer:
state_dict_keys = list(state_dict.keys())
for k in state_dict_keys:
if 'attn_mask' in k:
del state_dict[k]
super()._load_from_state_dict(state_dict, prefix, local_metadata,
*args, **kwargs)
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
for i in range(0, self.frozen_stages + 1):
m = self.stages[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
for i in self.out_indices:
if i <= self.frozen_stages:
for param in getattr(self, f'norm{i}').parameters():
param.requires_grad = False
def train(self, mode=True):
super(SwinTransformer, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
# trick: eval have effect on BatchNorm only
if isinstance(m, _BatchNorm):
m.eval()
def _prepare_abs_pos_embed(self, state_dict, prefix, *args, **kwargs):
name = prefix + 'absolute_pos_embed'
if name not in state_dict.keys():
return
ckpt_pos_embed_shape = state_dict[name].shape
if self.absolute_pos_embed.shape != ckpt_pos_embed_shape:
from mmengine.logging import MMLogger
logger = MMLogger.get_current_instance()
logger.info(
'Resize the absolute_pos_embed shape from '
f'{ckpt_pos_embed_shape} to {self.absolute_pos_embed.shape}.')
ckpt_pos_embed_shape = to_2tuple(
int(np.sqrt(ckpt_pos_embed_shape[1] - self.num_extra_tokens)))
pos_embed_shape = self.patch_embed.init_out_size
state_dict[name] = resize_pos_embed(state_dict[name],
ckpt_pos_embed_shape,
pos_embed_shape,
self.interpolate_mode,
self.num_extra_tokens)
def _prepare_relative_position_bias_table(self, state_dict, prefix, *args,
**kwargs):
state_dict_model = self.state_dict()
all_keys = list(state_dict_model.keys())
for key in all_keys:
if 'relative_position_bias_table' in key:
ckpt_key = prefix + key
if ckpt_key not in state_dict:
continue
relative_position_bias_table_pretrained = state_dict[ckpt_key]
relative_position_bias_table_current = state_dict_model[key]
L1, nH1 = relative_position_bias_table_pretrained.size()
L2, nH2 = relative_position_bias_table_current.size()
if L1 != L2:
src_size = int(L1**0.5)
dst_size = int(L2**0.5)
new_rel_pos_bias = resize_relative_position_bias_table(
src_size, dst_size,
relative_position_bias_table_pretrained, nH1)
from mmengine.logging import MMLogger
logger = MMLogger.get_current_instance()
logger.info('Resize the relative_position_bias_table from '
f'{state_dict[ckpt_key].shape} to '
f'{new_rel_pos_bias.shape}')
state_dict[ckpt_key] = new_rel_pos_bias
# The index buffer need to be re-generated.
index_buffer = ckpt_key.replace('bias_table', 'index')
del state_dict[index_buffer]
|