File size: 11,888 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch.nn as nn
from mmcv.cnn import build_conv_layer, build_norm_layer

from mmcls.registry import MODELS
from .resnet import ResNet
from .resnext import Bottleneck


@MODELS.register_module()
class RegNet(ResNet):
    """RegNet backbone.

    More details can be found in `paper <https://arxiv.org/abs/2003.13678>`_ .

    Args:
        arch (dict): The parameter of RegNets.
            - w0 (int): initial width
            - wa (float): slope of width
            - wm (float): quantization parameter to quantize the width
            - depth (int): depth of the backbone
            - group_w (int): width of group
            - bot_mul (float): bottleneck ratio, i.e. expansion of bottleneck.
        strides (Sequence[int]): Strides of the first block of each stage.
        base_channels (int): Base channels after stem layer.
        in_channels (int): Number of input image channels. Default: 3.
        dilations (Sequence[int]): Dilation of each stage.
        out_indices (Sequence[int]): Output from which stages.
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer. Default: "pytorch".
        frozen_stages (int): Stages to be frozen (all param fixed). -1 means
            not freezing any parameters. Default: -1.
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: dict(type='BN', requires_grad=True).
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Default: False.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Default: False.
        zero_init_residual (bool): whether to use zero init for last norm layer
            in resblocks to let them behave as identity. Default: True.

    Example:
        >>> from mmcls.models import RegNet
        >>> import torch
        >>> self = RegNet(
                arch=dict(
                    w0=88,
                    wa=26.31,
                    wm=2.25,
                    group_w=48,
                    depth=25,
                    bot_mul=1.0))
        >>> self.eval()
        >>> inputs = torch.rand(1, 3, 32, 32)
        >>> level_outputs = self.forward(inputs)
        >>> for level_out in level_outputs:
        ...     print(tuple(level_out.shape))
        (1, 96, 8, 8)
        (1, 192, 4, 4)
        (1, 432, 2, 2)
        (1, 1008, 1, 1)
    """
    arch_settings = {
        'regnetx_400mf':
        dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22, bot_mul=1.0),
        'regnetx_800mf':
        dict(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16, bot_mul=1.0),
        'regnetx_1.6gf':
        dict(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18, bot_mul=1.0),
        'regnetx_3.2gf':
        dict(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25, bot_mul=1.0),
        'regnetx_4.0gf':
        dict(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23, bot_mul=1.0),
        'regnetx_6.4gf':
        dict(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17, bot_mul=1.0),
        'regnetx_8.0gf':
        dict(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23, bot_mul=1.0),
        'regnetx_12gf':
        dict(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19, bot_mul=1.0),
    }

    def __init__(self,
                 arch,
                 in_channels=3,
                 stem_channels=32,
                 base_channels=32,
                 strides=(2, 2, 2, 2),
                 dilations=(1, 1, 1, 1),
                 out_indices=(3, ),
                 style='pytorch',
                 deep_stem=False,
                 avg_down=False,
                 frozen_stages=-1,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN', requires_grad=True),
                 norm_eval=False,
                 with_cp=False,
                 zero_init_residual=True,
                 init_cfg=None):
        super(ResNet, self).__init__(init_cfg)

        # Generate RegNet parameters first
        if isinstance(arch, str):
            assert arch in self.arch_settings, \
                f'"arch": "{arch}" is not one of the' \
                ' arch_settings'
            arch = self.arch_settings[arch]
        elif not isinstance(arch, dict):
            raise TypeError('Expect "arch" to be either a string '
                            f'or a dict, got {type(arch)}')

        widths, num_stages = self.generate_regnet(
            arch['w0'],
            arch['wa'],
            arch['wm'],
            arch['depth'],
        )
        # Convert to per stage format
        stage_widths, stage_blocks = self.get_stages_from_blocks(widths)
        # Generate group widths and bot muls
        group_widths = [arch['group_w'] for _ in range(num_stages)]
        self.bottleneck_ratio = [arch['bot_mul'] for _ in range(num_stages)]
        # Adjust the compatibility of stage_widths and group_widths
        stage_widths, group_widths = self.adjust_width_group(
            stage_widths, self.bottleneck_ratio, group_widths)

        # Group params by stage
        self.stage_widths = stage_widths
        self.group_widths = group_widths
        self.depth = sum(stage_blocks)
        self.stem_channels = stem_channels
        self.base_channels = base_channels
        self.num_stages = num_stages
        assert num_stages >= 1 and num_stages <= 4
        self.strides = strides
        self.dilations = dilations
        assert len(strides) == len(dilations) == num_stages
        self.out_indices = out_indices
        assert max(out_indices) < num_stages
        self.style = style
        self.deep_stem = deep_stem
        if self.deep_stem:
            raise NotImplementedError(
                'deep_stem has not been implemented for RegNet')
        self.avg_down = avg_down
        self.frozen_stages = frozen_stages
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.with_cp = with_cp
        self.norm_eval = norm_eval
        self.zero_init_residual = zero_init_residual
        self.stage_blocks = stage_blocks[:num_stages]

        self._make_stem_layer(in_channels, stem_channels)

        _in_channels = stem_channels
        self.res_layers = []
        for i, num_blocks in enumerate(self.stage_blocks):
            stride = self.strides[i]
            dilation = self.dilations[i]
            group_width = self.group_widths[i]
            width = int(round(self.stage_widths[i] * self.bottleneck_ratio[i]))
            stage_groups = width // group_width

            res_layer = self.make_res_layer(
                block=Bottleneck,
                num_blocks=num_blocks,
                in_channels=_in_channels,
                out_channels=self.stage_widths[i],
                expansion=1,
                stride=stride,
                dilation=dilation,
                style=self.style,
                avg_down=self.avg_down,
                with_cp=self.with_cp,
                conv_cfg=self.conv_cfg,
                norm_cfg=self.norm_cfg,
                base_channels=self.stage_widths[i],
                groups=stage_groups,
                width_per_group=group_width)
            _in_channels = self.stage_widths[i]
            layer_name = f'layer{i + 1}'
            self.add_module(layer_name, res_layer)
            self.res_layers.append(layer_name)

        self._freeze_stages()

        self.feat_dim = stage_widths[-1]

    def _make_stem_layer(self, in_channels, base_channels):
        self.conv1 = build_conv_layer(
            self.conv_cfg,
            in_channels,
            base_channels,
            kernel_size=3,
            stride=2,
            padding=1,
            bias=False)
        self.norm1_name, norm1 = build_norm_layer(
            self.norm_cfg, base_channels, postfix=1)
        self.add_module(self.norm1_name, norm1)
        self.relu = nn.ReLU(inplace=True)

    def generate_regnet(self,
                        initial_width,
                        width_slope,
                        width_parameter,
                        depth,
                        divisor=8):
        """Generates per block width from RegNet parameters.

        Args:
            initial_width ([int]): Initial width of the backbone
            width_slope ([float]): Slope of the quantized linear function
            width_parameter ([int]): Parameter used to quantize the width.
            depth ([int]): Depth of the backbone.
            divisor (int): The divisor of channels. Defaults to 8.

        Returns:
            tuple: tuple containing:
                - list: Widths of each stage.
                - int: The number of stages.
        """
        assert width_slope >= 0
        assert initial_width > 0
        assert width_parameter > 1
        assert initial_width % divisor == 0
        widths_cont = np.arange(depth) * width_slope + initial_width
        ks = np.round(
            np.log(widths_cont / initial_width) / np.log(width_parameter))
        widths = initial_width * np.power(width_parameter, ks)
        widths = np.round(np.divide(widths, divisor)) * divisor
        num_stages = len(np.unique(widths))
        widths, widths_cont = widths.astype(int).tolist(), widths_cont.tolist()
        return widths, num_stages

    @staticmethod
    def quantize_float(number, divisor):
        """Converts a float to closest non-zero int divisible by divior.

        Args:
            number (int): Original number to be quantized.
            divisor (int): Divisor used to quantize the number.

        Returns:
            int: quantized number that is divisible by devisor.
        """
        return int(round(number / divisor) * divisor)

    def adjust_width_group(self, widths, bottleneck_ratio, groups):
        """Adjusts the compatibility of widths and groups.

        Args:
            widths (list[int]): Width of each stage.
            bottleneck_ratio (float): Bottleneck ratio.
            groups (int): number of groups in each stage

        Returns:
            tuple(list): The adjusted widths and groups of each stage.
        """
        bottleneck_width = [
            int(w * b) for w, b in zip(widths, bottleneck_ratio)
        ]
        groups = [min(g, w_bot) for g, w_bot in zip(groups, bottleneck_width)]
        bottleneck_width = [
            self.quantize_float(w_bot, g)
            for w_bot, g in zip(bottleneck_width, groups)
        ]
        widths = [
            int(w_bot / b)
            for w_bot, b in zip(bottleneck_width, bottleneck_ratio)
        ]
        return widths, groups

    def get_stages_from_blocks(self, widths):
        """Gets widths/stage_blocks of network at each stage.

        Args:
            widths (list[int]): Width in each stage.

        Returns:
            tuple(list): width and depth of each stage
        """
        width_diff = [
            width != width_prev
            for width, width_prev in zip(widths + [0], [0] + widths)
        ]
        stage_widths = [
            width for width, diff in zip(widths, width_diff[:-1]) if diff
        ]
        stage_blocks = np.diff([
            depth for depth, diff in zip(range(len(width_diff)), width_diff)
            if diff
        ]).tolist()
        return stage_widths, stage_blocks

    def forward(self, x):
        x = self.conv1(x)
        x = self.norm1(x)
        x = self.relu(x)

        outs = []
        for i, layer_name in enumerate(self.res_layers):
            res_layer = getattr(self, layer_name)
            x = res_layer(x)
            if i in self.out_indices:
                outs.append(x)

        return tuple(outs)