Spaces:
Runtime error
Runtime error
File size: 11,888 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch.nn as nn
from mmcv.cnn import build_conv_layer, build_norm_layer
from mmcls.registry import MODELS
from .resnet import ResNet
from .resnext import Bottleneck
@MODELS.register_module()
class RegNet(ResNet):
"""RegNet backbone.
More details can be found in `paper <https://arxiv.org/abs/2003.13678>`_ .
Args:
arch (dict): The parameter of RegNets.
- w0 (int): initial width
- wa (float): slope of width
- wm (float): quantization parameter to quantize the width
- depth (int): depth of the backbone
- group_w (int): width of group
- bot_mul (float): bottleneck ratio, i.e. expansion of bottleneck.
strides (Sequence[int]): Strides of the first block of each stage.
base_channels (int): Base channels after stem layer.
in_channels (int): Number of input image channels. Default: 3.
dilations (Sequence[int]): Dilation of each stage.
out_indices (Sequence[int]): Output from which stages.
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer. Default: "pytorch".
frozen_stages (int): Stages to be frozen (all param fixed). -1 means
not freezing any parameters. Default: -1.
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN', requires_grad=True).
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
zero_init_residual (bool): whether to use zero init for last norm layer
in resblocks to let them behave as identity. Default: True.
Example:
>>> from mmcls.models import RegNet
>>> import torch
>>> self = RegNet(
arch=dict(
w0=88,
wa=26.31,
wm=2.25,
group_w=48,
depth=25,
bot_mul=1.0))
>>> self.eval()
>>> inputs = torch.rand(1, 3, 32, 32)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
(1, 96, 8, 8)
(1, 192, 4, 4)
(1, 432, 2, 2)
(1, 1008, 1, 1)
"""
arch_settings = {
'regnetx_400mf':
dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22, bot_mul=1.0),
'regnetx_800mf':
dict(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16, bot_mul=1.0),
'regnetx_1.6gf':
dict(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18, bot_mul=1.0),
'regnetx_3.2gf':
dict(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25, bot_mul=1.0),
'regnetx_4.0gf':
dict(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23, bot_mul=1.0),
'regnetx_6.4gf':
dict(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17, bot_mul=1.0),
'regnetx_8.0gf':
dict(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23, bot_mul=1.0),
'regnetx_12gf':
dict(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19, bot_mul=1.0),
}
def __init__(self,
arch,
in_channels=3,
stem_channels=32,
base_channels=32,
strides=(2, 2, 2, 2),
dilations=(1, 1, 1, 1),
out_indices=(3, ),
style='pytorch',
deep_stem=False,
avg_down=False,
frozen_stages=-1,
conv_cfg=None,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=False,
with_cp=False,
zero_init_residual=True,
init_cfg=None):
super(ResNet, self).__init__(init_cfg)
# Generate RegNet parameters first
if isinstance(arch, str):
assert arch in self.arch_settings, \
f'"arch": "{arch}" is not one of the' \
' arch_settings'
arch = self.arch_settings[arch]
elif not isinstance(arch, dict):
raise TypeError('Expect "arch" to be either a string '
f'or a dict, got {type(arch)}')
widths, num_stages = self.generate_regnet(
arch['w0'],
arch['wa'],
arch['wm'],
arch['depth'],
)
# Convert to per stage format
stage_widths, stage_blocks = self.get_stages_from_blocks(widths)
# Generate group widths and bot muls
group_widths = [arch['group_w'] for _ in range(num_stages)]
self.bottleneck_ratio = [arch['bot_mul'] for _ in range(num_stages)]
# Adjust the compatibility of stage_widths and group_widths
stage_widths, group_widths = self.adjust_width_group(
stage_widths, self.bottleneck_ratio, group_widths)
# Group params by stage
self.stage_widths = stage_widths
self.group_widths = group_widths
self.depth = sum(stage_blocks)
self.stem_channels = stem_channels
self.base_channels = base_channels
self.num_stages = num_stages
assert num_stages >= 1 and num_stages <= 4
self.strides = strides
self.dilations = dilations
assert len(strides) == len(dilations) == num_stages
self.out_indices = out_indices
assert max(out_indices) < num_stages
self.style = style
self.deep_stem = deep_stem
if self.deep_stem:
raise NotImplementedError(
'deep_stem has not been implemented for RegNet')
self.avg_down = avg_down
self.frozen_stages = frozen_stages
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.with_cp = with_cp
self.norm_eval = norm_eval
self.zero_init_residual = zero_init_residual
self.stage_blocks = stage_blocks[:num_stages]
self._make_stem_layer(in_channels, stem_channels)
_in_channels = stem_channels
self.res_layers = []
for i, num_blocks in enumerate(self.stage_blocks):
stride = self.strides[i]
dilation = self.dilations[i]
group_width = self.group_widths[i]
width = int(round(self.stage_widths[i] * self.bottleneck_ratio[i]))
stage_groups = width // group_width
res_layer = self.make_res_layer(
block=Bottleneck,
num_blocks=num_blocks,
in_channels=_in_channels,
out_channels=self.stage_widths[i],
expansion=1,
stride=stride,
dilation=dilation,
style=self.style,
avg_down=self.avg_down,
with_cp=self.with_cp,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
base_channels=self.stage_widths[i],
groups=stage_groups,
width_per_group=group_width)
_in_channels = self.stage_widths[i]
layer_name = f'layer{i + 1}'
self.add_module(layer_name, res_layer)
self.res_layers.append(layer_name)
self._freeze_stages()
self.feat_dim = stage_widths[-1]
def _make_stem_layer(self, in_channels, base_channels):
self.conv1 = build_conv_layer(
self.conv_cfg,
in_channels,
base_channels,
kernel_size=3,
stride=2,
padding=1,
bias=False)
self.norm1_name, norm1 = build_norm_layer(
self.norm_cfg, base_channels, postfix=1)
self.add_module(self.norm1_name, norm1)
self.relu = nn.ReLU(inplace=True)
def generate_regnet(self,
initial_width,
width_slope,
width_parameter,
depth,
divisor=8):
"""Generates per block width from RegNet parameters.
Args:
initial_width ([int]): Initial width of the backbone
width_slope ([float]): Slope of the quantized linear function
width_parameter ([int]): Parameter used to quantize the width.
depth ([int]): Depth of the backbone.
divisor (int): The divisor of channels. Defaults to 8.
Returns:
tuple: tuple containing:
- list: Widths of each stage.
- int: The number of stages.
"""
assert width_slope >= 0
assert initial_width > 0
assert width_parameter > 1
assert initial_width % divisor == 0
widths_cont = np.arange(depth) * width_slope + initial_width
ks = np.round(
np.log(widths_cont / initial_width) / np.log(width_parameter))
widths = initial_width * np.power(width_parameter, ks)
widths = np.round(np.divide(widths, divisor)) * divisor
num_stages = len(np.unique(widths))
widths, widths_cont = widths.astype(int).tolist(), widths_cont.tolist()
return widths, num_stages
@staticmethod
def quantize_float(number, divisor):
"""Converts a float to closest non-zero int divisible by divior.
Args:
number (int): Original number to be quantized.
divisor (int): Divisor used to quantize the number.
Returns:
int: quantized number that is divisible by devisor.
"""
return int(round(number / divisor) * divisor)
def adjust_width_group(self, widths, bottleneck_ratio, groups):
"""Adjusts the compatibility of widths and groups.
Args:
widths (list[int]): Width of each stage.
bottleneck_ratio (float): Bottleneck ratio.
groups (int): number of groups in each stage
Returns:
tuple(list): The adjusted widths and groups of each stage.
"""
bottleneck_width = [
int(w * b) for w, b in zip(widths, bottleneck_ratio)
]
groups = [min(g, w_bot) for g, w_bot in zip(groups, bottleneck_width)]
bottleneck_width = [
self.quantize_float(w_bot, g)
for w_bot, g in zip(bottleneck_width, groups)
]
widths = [
int(w_bot / b)
for w_bot, b in zip(bottleneck_width, bottleneck_ratio)
]
return widths, groups
def get_stages_from_blocks(self, widths):
"""Gets widths/stage_blocks of network at each stage.
Args:
widths (list[int]): Width in each stage.
Returns:
tuple(list): width and depth of each stage
"""
width_diff = [
width != width_prev
for width, width_prev in zip(widths + [0], [0] + widths)
]
stage_widths = [
width for width, diff in zip(widths, width_diff[:-1]) if diff
]
stage_blocks = np.diff([
depth for depth, diff in zip(range(len(width_diff)), width_diff)
if diff
]).tolist()
return stage_widths, stage_blocks
def forward(self, x):
x = self.conv1(x)
x = self.norm1(x)
x = self.relu(x)
outs = []
for i, layer_name in enumerate(self.res_layers):
res_layer = getattr(self, layer_name)
x = res_layer(x)
if i in self.out_indices:
outs.append(x)
return tuple(outs)
|