Spaces:
Runtime error
Runtime error
File size: 26,089 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Sequence
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import build_activation_layer, build_norm_layer
from mmcv.cnn.bricks import DropPath
from mmcv.cnn.bricks.transformer import PatchEmbed
from mmengine.model import BaseModule, ModuleList
from mmengine.model.weight_init import trunc_normal_
from mmengine.utils import to_2tuple
from ..builder import BACKBONES
from ..utils import resize_pos_embed
from .base_backbone import BaseBackbone
def resize_decomposed_rel_pos(rel_pos, q_size, k_size):
"""Get relative positional embeddings according to the relative positions
of query and key sizes.
Args:
q_size (int): size of query q.
k_size (int): size of key k.
rel_pos (Tensor): relative position embeddings (L, C).
Returns:
Extracted positional embeddings according to relative positions.
"""
max_rel_dist = int(2 * max(q_size, k_size) - 1)
# Interpolate rel pos if needed.
if rel_pos.shape[0] != max_rel_dist:
# Interpolate rel pos.
resized = F.interpolate(
# (L, C) -> (1, C, L)
rel_pos.transpose(0, 1).unsqueeze(0),
size=max_rel_dist,
mode='linear',
)
# (1, C, L) -> (L, C)
resized = resized.squeeze(0).transpose(0, 1)
else:
resized = rel_pos
# Scale the coords with short length if shapes for q and k are different.
q_h_ratio = max(k_size / q_size, 1.0)
k_h_ratio = max(q_size / k_size, 1.0)
q_coords = torch.arange(q_size)[:, None] * q_h_ratio
k_coords = torch.arange(k_size)[None, :] * k_h_ratio
relative_coords = (q_coords - k_coords) + (k_size - 1) * k_h_ratio
return resized[relative_coords.long()]
def add_decomposed_rel_pos(attn,
q,
q_shape,
k_shape,
rel_pos_h,
rel_pos_w,
has_cls_token=False):
"""Spatial Relative Positional Embeddings."""
sp_idx = 1 if has_cls_token else 0
B, num_heads, _, C = q.shape
q_h, q_w = q_shape
k_h, k_w = k_shape
Rh = resize_decomposed_rel_pos(rel_pos_h, q_h, k_h)
Rw = resize_decomposed_rel_pos(rel_pos_w, q_w, k_w)
r_q = q[:, :, sp_idx:].reshape(B, num_heads, q_h, q_w, C)
rel_h = torch.einsum('byhwc,hkc->byhwk', r_q, Rh)
rel_w = torch.einsum('byhwc,wkc->byhwk', r_q, Rw)
rel_pos_embed = rel_h[:, :, :, :, :, None] + rel_w[:, :, :, :, None, :]
attn_map = attn[:, :, sp_idx:, sp_idx:].view(B, -1, q_h, q_w, k_h, k_w)
attn_map += rel_pos_embed
attn[:, :, sp_idx:, sp_idx:] = attn_map.view(B, -1, q_h * q_w, k_h * k_w)
return attn
class MLP(BaseModule):
"""Two-layer multilayer perceptron.
Comparing with :class:`mmcv.cnn.bricks.transformer.FFN`, this class allows
different input and output channel numbers.
Args:
in_channels (int): The number of input channels.
hidden_channels (int, optional): The number of hidden layer channels.
If None, same as the ``in_channels``. Defaults to None.
out_channels (int, optional): The number of output channels. If None,
same as the ``in_channels``. Defaults to None.
act_cfg (dict): The config of activation function.
Defaults to ``dict(type='GELU')``.
init_cfg (dict, optional): The config of weight initialization.
Defaults to None.
"""
def __init__(self,
in_channels,
hidden_channels=None,
out_channels=None,
act_cfg=dict(type='GELU'),
init_cfg=None):
super().__init__(init_cfg=init_cfg)
out_channels = out_channels or in_channels
hidden_channels = hidden_channels or in_channels
self.fc1 = nn.Linear(in_channels, hidden_channels)
self.act = build_activation_layer(act_cfg)
self.fc2 = nn.Linear(hidden_channels, out_channels)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return x
def attention_pool(x: torch.Tensor,
pool: nn.Module,
in_size: tuple,
norm: Optional[nn.Module] = None):
"""Pooling the feature tokens.
Args:
x (torch.Tensor): The input tensor, should be with shape
``(B, num_heads, L, C)`` or ``(B, L, C)``.
pool (nn.Module): The pooling module.
in_size (Tuple[int]): The shape of the input feature map.
norm (nn.Module, optional): The normalization module.
Defaults to None.
"""
ndim = x.ndim
if ndim == 4:
B, num_heads, L, C = x.shape
elif ndim == 3:
num_heads = 1
B, L, C = x.shape
else:
raise RuntimeError(f'Unsupported input dimension {x.shape}')
H, W = in_size
assert L == H * W
# (B, num_heads, H*W, C) -> (B*num_heads, C, H, W)
x = x.reshape(B * num_heads, H, W, C).permute(0, 3, 1, 2).contiguous()
x = pool(x)
out_size = x.shape[-2:]
# (B*num_heads, C, H', W') -> (B, num_heads, H'*W', C)
x = x.reshape(B, num_heads, C, -1).transpose(2, 3)
if norm is not None:
x = norm(x)
if ndim == 3:
x = x.squeeze(1)
return x, out_size
class MultiScaleAttention(BaseModule):
"""Multiscale Multi-head Attention block.
Args:
in_dims (int): Number of input channels.
out_dims (int): Number of output channels.
num_heads (int): Number of attention heads.
qkv_bias (bool): If True, add a learnable bias to query, key and
value. Defaults to True.
norm_cfg (dict): The config of normalization layers.
Defaults to ``dict(type='LN')``.
pool_kernel (tuple): kernel size for qkv pooling layers.
Defaults to (3, 3).
stride_q (int): stride size for q pooling layer. Defaults to 1.
stride_kv (int): stride size for kv pooling layer. Defaults to 1.
rel_pos_spatial (bool): Whether to enable the spatial relative
position embedding. Defaults to True.
residual_pooling (bool): Whether to enable the residual connection
after attention pooling. Defaults to True.
input_size (Tuple[int], optional): The input resolution, necessary
if enable the ``rel_pos_spatial``. Defaults to None.
rel_pos_zero_init (bool): If True, zero initialize relative
positional parameters. Defaults to False.
init_cfg (dict, optional): The config of weight initialization.
Defaults to None.
"""
def __init__(self,
in_dims,
out_dims,
num_heads,
qkv_bias=True,
norm_cfg=dict(type='LN'),
pool_kernel=(3, 3),
stride_q=1,
stride_kv=1,
rel_pos_spatial=False,
residual_pooling=True,
input_size=None,
rel_pos_zero_init=False,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.num_heads = num_heads
self.in_dims = in_dims
self.out_dims = out_dims
head_dim = out_dims // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(in_dims, out_dims * 3, bias=qkv_bias)
self.proj = nn.Linear(out_dims, out_dims)
# qkv pooling
pool_padding = [k // 2 for k in pool_kernel]
pool_dims = out_dims // num_heads
def build_pooling(stride):
pool = nn.Conv2d(
pool_dims,
pool_dims,
pool_kernel,
stride=stride,
padding=pool_padding,
groups=pool_dims,
bias=False,
)
norm = build_norm_layer(norm_cfg, pool_dims)[1]
return pool, norm
self.pool_q, self.norm_q = build_pooling(stride_q)
self.pool_k, self.norm_k = build_pooling(stride_kv)
self.pool_v, self.norm_v = build_pooling(stride_kv)
self.residual_pooling = residual_pooling
self.rel_pos_spatial = rel_pos_spatial
self.rel_pos_zero_init = rel_pos_zero_init
if self.rel_pos_spatial:
# initialize relative positional embeddings
assert input_size[0] == input_size[1]
size = input_size[0]
rel_dim = 2 * max(size // stride_q, size // stride_kv) - 1
self.rel_pos_h = nn.Parameter(torch.zeros(rel_dim, head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(rel_dim, head_dim))
def init_weights(self):
"""Weight initialization."""
super().init_weights()
if (isinstance(self.init_cfg, dict)
and self.init_cfg['type'] == 'Pretrained'):
# Suppress rel_pos_zero_init if use pretrained model.
return
if not self.rel_pos_zero_init:
trunc_normal_(self.rel_pos_h, std=0.02)
trunc_normal_(self.rel_pos_w, std=0.02)
def forward(self, x, in_size):
"""Forward the MultiScaleAttention."""
B, N, _ = x.shape # (B, H*W, C)
# qkv: (B, H*W, 3, num_heads, C)
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, -1)
# q, k, v: (B, num_heads, H*W, C)
q, k, v = qkv.permute(2, 0, 3, 1, 4).unbind(0)
q, q_shape = attention_pool(q, self.pool_q, in_size, norm=self.norm_q)
k, k_shape = attention_pool(k, self.pool_k, in_size, norm=self.norm_k)
v, v_shape = attention_pool(v, self.pool_v, in_size, norm=self.norm_v)
attn = (q * self.scale) @ k.transpose(-2, -1)
if self.rel_pos_spatial:
attn = add_decomposed_rel_pos(attn, q, q_shape, k_shape,
self.rel_pos_h, self.rel_pos_w)
attn = attn.softmax(dim=-1)
x = attn @ v
if self.residual_pooling:
x = x + q
# (B, num_heads, H'*W', C'//num_heads) -> (B, H'*W', C')
x = x.transpose(1, 2).reshape(B, -1, self.out_dims)
x = self.proj(x)
return x, q_shape
class MultiScaleBlock(BaseModule):
"""Multiscale Transformer blocks.
Args:
in_dims (int): Number of input channels.
out_dims (int): Number of output channels.
num_heads (int): Number of attention heads.
mlp_ratio (float): Ratio of hidden dimensions in MLP layers.
Defaults to 4.0.
qkv_bias (bool): If True, add a learnable bias to query, key and
value. Defaults to True.
drop_path (float): Stochastic depth rate. Defaults to 0.
norm_cfg (dict): The config of normalization layers.
Defaults to ``dict(type='LN')``.
act_cfg (dict): The config of activation function.
Defaults to ``dict(type='GELU')``.
qkv_pool_kernel (tuple): kernel size for qkv pooling layers.
Defaults to (3, 3).
stride_q (int): stride size for q pooling layer. Defaults to 1.
stride_kv (int): stride size for kv pooling layer. Defaults to 1.
rel_pos_spatial (bool): Whether to enable the spatial relative
position embedding. Defaults to True.
residual_pooling (bool): Whether to enable the residual connection
after attention pooling. Defaults to True.
dim_mul_in_attention (bool): Whether to multiply the ``embed_dims`` in
attention layers. If False, multiply it in MLP layers.
Defaults to True.
input_size (Tuple[int], optional): The input resolution, necessary
if enable the ``rel_pos_spatial``. Defaults to None.
rel_pos_zero_init (bool): If True, zero initialize relative
positional parameters. Defaults to False.
init_cfg (dict, optional): The config of weight initialization.
Defaults to None.
"""
def __init__(
self,
in_dims,
out_dims,
num_heads,
mlp_ratio=4.0,
qkv_bias=True,
drop_path=0.0,
norm_cfg=dict(type='LN'),
act_cfg=dict(type='GELU'),
qkv_pool_kernel=(3, 3),
stride_q=1,
stride_kv=1,
rel_pos_spatial=True,
residual_pooling=True,
dim_mul_in_attention=True,
input_size=None,
rel_pos_zero_init=False,
init_cfg=None,
):
super().__init__(init_cfg=init_cfg)
self.in_dims = in_dims
self.out_dims = out_dims
self.norm1 = build_norm_layer(norm_cfg, in_dims)[1]
self.dim_mul_in_attention = dim_mul_in_attention
attn_dims = out_dims if dim_mul_in_attention else in_dims
self.attn = MultiScaleAttention(
in_dims,
attn_dims,
num_heads=num_heads,
qkv_bias=qkv_bias,
norm_cfg=norm_cfg,
pool_kernel=qkv_pool_kernel,
stride_q=stride_q,
stride_kv=stride_kv,
rel_pos_spatial=rel_pos_spatial,
residual_pooling=residual_pooling,
input_size=input_size,
rel_pos_zero_init=rel_pos_zero_init)
self.drop_path = DropPath(
drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = build_norm_layer(norm_cfg, attn_dims)[1]
self.mlp = MLP(
in_channels=attn_dims,
hidden_channels=int(attn_dims * mlp_ratio),
out_channels=out_dims,
act_cfg=act_cfg)
if in_dims != out_dims:
self.proj = nn.Linear(in_dims, out_dims)
else:
self.proj = None
if stride_q > 1:
kernel_skip = stride_q + 1
padding_skip = int(kernel_skip // 2)
self.pool_skip = nn.MaxPool2d(
kernel_skip, stride_q, padding_skip, ceil_mode=False)
if input_size is not None:
input_size = to_2tuple(input_size)
out_size = [size // stride_q for size in input_size]
self.init_out_size = out_size
else:
self.init_out_size = None
else:
self.pool_skip = None
self.init_out_size = input_size
def forward(self, x, in_size):
x_norm = self.norm1(x)
x_attn, out_size = self.attn(x_norm, in_size)
if self.dim_mul_in_attention and self.proj is not None:
skip = self.proj(x_norm)
else:
skip = x
if self.pool_skip is not None:
skip, _ = attention_pool(skip, self.pool_skip, in_size)
x = skip + self.drop_path(x_attn)
x_norm = self.norm2(x)
x_mlp = self.mlp(x_norm)
if not self.dim_mul_in_attention and self.proj is not None:
skip = self.proj(x_norm)
else:
skip = x
x = skip + self.drop_path(x_mlp)
return x, out_size
@BACKBONES.register_module()
class MViT(BaseBackbone):
"""Multi-scale ViT v2.
A PyTorch implement of : `MViTv2: Improved Multiscale Vision Transformers
for Classification and Detection <https://arxiv.org/abs/2112.01526>`_
Inspiration from `the official implementation
<https://github.com/facebookresearch/mvit>`_ and `the detectron2
implementation <https://github.com/facebookresearch/detectron2>`_
Args:
arch (str | dict): MViT architecture. If use string, choose
from 'tiny', 'small', 'base' and 'large'. If use dict, it should
have below keys:
- **embed_dims** (int): The dimensions of embedding.
- **num_layers** (int): The number of layers.
- **num_heads** (int): The number of heads in attention
modules of the initial layer.
- **downscale_indices** (List[int]): The layer indices to downscale
the feature map.
Defaults to 'base'.
img_size (int): The expected input image shape. Defaults to 224.
in_channels (int): The num of input channels. Defaults to 3.
out_scales (int | Sequence[int]): The output scale indices.
They should not exceed the length of ``downscale_indices``.
Defaults to -1, which means the last scale.
drop_path_rate (float): Stochastic depth rate. Defaults to 0.1.
use_abs_pos_embed (bool): If True, add absolute position embedding to
the patch embedding. Defaults to False.
interpolate_mode (str): Select the interpolate mode for absolute
position embedding vector resize. Defaults to "bicubic".
pool_kernel (tuple): kernel size for qkv pooling layers.
Defaults to (3, 3).
dim_mul (int): The magnification for ``embed_dims`` in the downscale
layers. Defaults to 2.
head_mul (int): The magnification for ``num_heads`` in the downscale
layers. Defaults to 2.
adaptive_kv_stride (int): The stride size for kv pooling in the initial
layer. Defaults to 4.
rel_pos_spatial (bool): Whether to enable the spatial relative position
embedding. Defaults to True.
residual_pooling (bool): Whether to enable the residual connection
after attention pooling. Defaults to True.
dim_mul_in_attention (bool): Whether to multiply the ``embed_dims`` in
attention layers. If False, multiply it in MLP layers.
Defaults to True.
rel_pos_zero_init (bool): If True, zero initialize relative
positional parameters. Defaults to False.
mlp_ratio (float): Ratio of hidden dimensions in MLP layers.
Defaults to 4.0.
qkv_bias (bool): enable bias for qkv if True. Defaults to True.
norm_cfg (dict): Config dict for normalization layer for all output
features. Defaults to ``dict(type='LN', eps=1e-6)``.
patch_cfg (dict): Config dict for the patch embedding layer.
Defaults to ``dict(kernel_size=7, stride=4, padding=3)``.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
Examples:
>>> import torch
>>> from mmcls.models import build_backbone
>>>
>>> cfg = dict(type='MViT', arch='tiny', out_scales=[0, 1, 2, 3])
>>> model = build_backbone(cfg)
>>> inputs = torch.rand(1, 3, 224, 224)
>>> outputs = model(inputs)
>>> for i, output in enumerate(outputs):
>>> print(f'scale{i}: {output.shape}')
scale0: torch.Size([1, 96, 56, 56])
scale1: torch.Size([1, 192, 28, 28])
scale2: torch.Size([1, 384, 14, 14])
scale3: torch.Size([1, 768, 7, 7])
"""
arch_zoo = {
'tiny': {
'embed_dims': 96,
'num_layers': 10,
'num_heads': 1,
'downscale_indices': [1, 3, 8]
},
'small': {
'embed_dims': 96,
'num_layers': 16,
'num_heads': 1,
'downscale_indices': [1, 3, 14]
},
'base': {
'embed_dims': 96,
'num_layers': 24,
'num_heads': 1,
'downscale_indices': [2, 5, 21]
},
'large': {
'embed_dims': 144,
'num_layers': 48,
'num_heads': 2,
'downscale_indices': [2, 8, 44]
},
}
num_extra_tokens = 0
def __init__(self,
arch='base',
img_size=224,
in_channels=3,
out_scales=-1,
drop_path_rate=0.,
use_abs_pos_embed=False,
interpolate_mode='bicubic',
pool_kernel=(3, 3),
dim_mul=2,
head_mul=2,
adaptive_kv_stride=4,
rel_pos_spatial=True,
residual_pooling=True,
dim_mul_in_attention=True,
rel_pos_zero_init=False,
mlp_ratio=4.,
qkv_bias=True,
norm_cfg=dict(type='LN', eps=1e-6),
patch_cfg=dict(kernel_size=7, stride=4, padding=3),
init_cfg=None):
super().__init__(init_cfg)
if isinstance(arch, str):
arch = arch.lower()
assert arch in set(self.arch_zoo), \
f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
self.arch_settings = self.arch_zoo[arch]
else:
essential_keys = {
'embed_dims', 'num_layers', 'num_heads', 'downscale_indices'
}
assert isinstance(arch, dict) and essential_keys <= set(arch), \
f'Custom arch needs a dict with keys {essential_keys}'
self.arch_settings = arch
self.embed_dims = self.arch_settings['embed_dims']
self.num_layers = self.arch_settings['num_layers']
self.num_heads = self.arch_settings['num_heads']
self.downscale_indices = self.arch_settings['downscale_indices']
self.num_scales = len(self.downscale_indices) + 1
self.stage_indices = {
index - 1: i
for i, index in enumerate(self.downscale_indices)
}
self.stage_indices[self.num_layers - 1] = self.num_scales - 1
self.use_abs_pos_embed = use_abs_pos_embed
self.interpolate_mode = interpolate_mode
if isinstance(out_scales, int):
out_scales = [out_scales]
assert isinstance(out_scales, Sequence), \
f'"out_scales" must by a sequence or int, ' \
f'get {type(out_scales)} instead.'
for i, index in enumerate(out_scales):
if index < 0:
out_scales[i] = self.num_scales + index
assert 0 <= out_scales[i] <= self.num_scales, \
f'Invalid out_scales {index}'
self.out_scales = sorted(list(out_scales))
# Set patch embedding
_patch_cfg = dict(
in_channels=in_channels,
input_size=img_size,
embed_dims=self.embed_dims,
conv_type='Conv2d',
)
_patch_cfg.update(patch_cfg)
self.patch_embed = PatchEmbed(**_patch_cfg)
self.patch_resolution = self.patch_embed.init_out_size
# Set absolute position embedding
if self.use_abs_pos_embed:
num_patches = self.patch_resolution[0] * self.patch_resolution[1]
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches, self.embed_dims))
# stochastic depth decay rule
dpr = np.linspace(0, drop_path_rate, self.num_layers)
self.blocks = ModuleList()
out_dims_list = [self.embed_dims]
num_heads = self.num_heads
stride_kv = adaptive_kv_stride
input_size = self.patch_resolution
for i in range(self.num_layers):
if i in self.downscale_indices:
num_heads *= head_mul
stride_q = 2
stride_kv = max(stride_kv // 2, 1)
else:
stride_q = 1
# Set output embed_dims
if dim_mul_in_attention and i in self.downscale_indices:
# multiply embed_dims in downscale layers.
out_dims = out_dims_list[-1] * dim_mul
elif not dim_mul_in_attention and i + 1 in self.downscale_indices:
# multiply embed_dims before downscale layers.
out_dims = out_dims_list[-1] * dim_mul
else:
out_dims = out_dims_list[-1]
attention_block = MultiScaleBlock(
in_dims=out_dims_list[-1],
out_dims=out_dims,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop_path=dpr[i],
norm_cfg=norm_cfg,
qkv_pool_kernel=pool_kernel,
stride_q=stride_q,
stride_kv=stride_kv,
rel_pos_spatial=rel_pos_spatial,
residual_pooling=residual_pooling,
dim_mul_in_attention=dim_mul_in_attention,
input_size=input_size,
rel_pos_zero_init=rel_pos_zero_init)
self.blocks.append(attention_block)
input_size = attention_block.init_out_size
out_dims_list.append(out_dims)
if i in self.stage_indices:
stage_index = self.stage_indices[i]
if stage_index in self.out_scales:
norm_layer = build_norm_layer(norm_cfg, out_dims)[1]
self.add_module(f'norm{stage_index}', norm_layer)
def init_weights(self):
super().init_weights()
if (isinstance(self.init_cfg, dict)
and self.init_cfg['type'] == 'Pretrained'):
# Suppress default init if use pretrained model.
return
if self.use_abs_pos_embed:
trunc_normal_(self.pos_embed, std=0.02)
def forward(self, x):
"""Forward the MViT."""
B = x.shape[0]
x, patch_resolution = self.patch_embed(x)
if self.use_abs_pos_embed:
x = x + resize_pos_embed(
self.pos_embed,
self.patch_resolution,
patch_resolution,
mode=self.interpolate_mode,
num_extra_tokens=self.num_extra_tokens)
outs = []
for i, block in enumerate(self.blocks):
x, patch_resolution = block(x, patch_resolution)
if i in self.stage_indices:
stage_index = self.stage_indices[i]
if stage_index in self.out_scales:
B, _, C = x.shape
x = getattr(self, f'norm{stage_index}')(x)
out = x.transpose(1, 2).reshape(B, C, *patch_resolution)
outs.append(out.contiguous())
return tuple(outs)
|