File size: 17,051 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Callable, Optional, Sequence

import torch
import torch.nn.functional as F
from mmcv.cnn import ConvModule, build_norm_layer
from mmengine.registry import MODELS
from torch import nn

from .base_backbone import BaseBackbone
from .mobilenet_v2 import InvertedResidual
from .vision_transformer import TransformerEncoderLayer


class MobileVitBlock(nn.Module):
    """MobileViT block.

    According to the paper, the MobileViT block has a local representation.
    a transformer-as-convolution layer which consists of a global
    representation with unfolding and folding, and a final fusion layer.

    Args:
        in_channels (int): Number of input image channels.
        transformer_dim (int): Number of transformer channels.
        ffn_dim (int): Number of ffn channels in transformer block.
        out_channels (int): Number of channels in output.
        conv_ksize (int): Conv kernel size in local representation
            and fusion. Defaults to 3.
        conv_cfg (dict, optional): Config dict for convolution layer.
            Defaults to None, which means using conv2d.
        norm_cfg (dict, optional): Config dict for normalization layer.
            Defaults to dict(type='BN').
        act_cfg (dict, optional): Config dict for activation layer.
            Defaults to dict(type='Swish').
        num_transformer_blocks (int): Number of transformer blocks in
            a MobileViT block. Defaults to 2.
        patch_size (int): Patch size for unfolding and folding.
             Defaults to 2.
        num_heads (int): Number of heads in global representation.
             Defaults to 4.
        drop_rate (float): Probability of an element to be zeroed
            after the feed forward layer. Defaults to 0.
        attn_drop_rate (float): The drop out rate for attention output weights.
            Defaults to 0.
        drop_path_rate (float): Stochastic depth rate. Defaults to 0.
        no_fusion (bool): Whether to remove the fusion layer.
            Defaults to False.
        transformer_norm_cfg (dict, optional): Config dict for normalization
            layer in transformer. Defaults to dict(type='LN').
    """

    def __init__(
            self,
            in_channels: int,
            transformer_dim: int,
            ffn_dim: int,
            out_channels: int,
            conv_ksize: int = 3,
            conv_cfg: Optional[dict] = None,
            norm_cfg: Optional[dict] = dict(type='BN'),
            act_cfg: Optional[dict] = dict(type='Swish'),
            num_transformer_blocks: int = 2,
            patch_size: int = 2,
            num_heads: int = 4,
            drop_rate: float = 0.,
            attn_drop_rate: float = 0.,
            drop_path_rate: float = 0.,
            no_fusion: bool = False,
            transformer_norm_cfg: Callable = dict(type='LN'),
    ):
        super(MobileVitBlock, self).__init__()

        self.local_rep = nn.Sequential(
            ConvModule(
                in_channels=in_channels,
                out_channels=in_channels,
                kernel_size=conv_ksize,
                padding=int((conv_ksize - 1) / 2),
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                act_cfg=act_cfg),
            ConvModule(
                in_channels=in_channels,
                out_channels=transformer_dim,
                kernel_size=1,
                bias=False,
                conv_cfg=conv_cfg,
                norm_cfg=None,
                act_cfg=None),
        )

        global_rep = [
            TransformerEncoderLayer(
                embed_dims=transformer_dim,
                num_heads=num_heads,
                feedforward_channels=ffn_dim,
                drop_rate=drop_rate,
                attn_drop_rate=attn_drop_rate,
                drop_path_rate=drop_path_rate,
                qkv_bias=True,
                act_cfg=dict(type='Swish'),
                norm_cfg=transformer_norm_cfg)
            for _ in range(num_transformer_blocks)
        ]
        global_rep.append(
            build_norm_layer(transformer_norm_cfg, transformer_dim)[1])
        self.global_rep = nn.Sequential(*global_rep)

        self.conv_proj = ConvModule(
            in_channels=transformer_dim,
            out_channels=out_channels,
            kernel_size=1,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg)

        if no_fusion:
            self.conv_fusion = None
        else:
            self.conv_fusion = ConvModule(
                in_channels=in_channels + out_channels,
                out_channels=out_channels,
                kernel_size=conv_ksize,
                padding=int((conv_ksize - 1) / 2),
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                act_cfg=act_cfg)

        self.patch_size = (patch_size, patch_size)
        self.patch_area = self.patch_size[0] * self.patch_size[1]

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        shortcut = x

        # Local representation
        x = self.local_rep(x)

        # Unfold (feature map -> patches)
        patch_h, patch_w = self.patch_size
        B, C, H, W = x.shape
        new_h, new_w = math.ceil(H / patch_h) * patch_h, math.ceil(
            W / patch_w) * patch_w
        num_patch_h, num_patch_w = new_h // patch_h, new_w // patch_w  # n_h, n_w # noqa
        num_patches = num_patch_h * num_patch_w  # N
        interpolate = False
        if new_h != H or new_w != W:
            # Note: Padding can be done, but then it needs to be handled in attention function. # noqa
            x = F.interpolate(
                x, size=(new_h, new_w), mode='bilinear', align_corners=False)
            interpolate = True

        # [B, C, H, W] --> [B * C * n_h, n_w, p_h, p_w]
        x = x.reshape(B * C * num_patch_h, patch_h, num_patch_w,
                      patch_w).transpose(1, 2)
        # [B * C * n_h, n_w, p_h, p_w] --> [BP, N, C] where P = p_h * p_w and N = n_h * n_w # noqa
        x = x.reshape(B, C, num_patches,
                      self.patch_area).transpose(1, 3).reshape(
                          B * self.patch_area, num_patches, -1)

        # Global representations
        x = self.global_rep(x)

        # Fold (patch -> feature map)
        # [B, P, N, C] --> [B*C*n_h, n_w, p_h, p_w]
        x = x.contiguous().view(B, self.patch_area, num_patches, -1)
        x = x.transpose(1, 3).reshape(B * C * num_patch_h, num_patch_w,
                                      patch_h, patch_w)
        # [B*C*n_h, n_w, p_h, p_w] --> [B*C*n_h, p_h, n_w, p_w] --> [B, C, H, W] # noqa
        x = x.transpose(1, 2).reshape(B, C, num_patch_h * patch_h,
                                      num_patch_w * patch_w)
        if interpolate:
            x = F.interpolate(
                x, size=(H, W), mode='bilinear', align_corners=False)

        x = self.conv_proj(x)
        if self.conv_fusion is not None:
            x = self.conv_fusion(torch.cat((shortcut, x), dim=1))
        return x


@MODELS.register_module()
class MobileViT(BaseBackbone):
    """MobileViT backbone.

    A PyTorch implementation of : `MobileViT: Light-weight, General-purpose,
    and Mobile-friendly Vision Transformer <https://arxiv.org/pdf/2110.02178.pdf>`_

    Modified from the `official repo
    <https://github.com/apple/ml-cvnets/blob/main/cvnets/models/classification/mobilevit.py>`_
    and `timm
    <https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/mobilevit.py>`_.

    Args:
        arch (str | List[list]): Architecture of MobileViT.

            - If a string, choose from "small", "x_small" and "xx_small".

            - If a list, every item should be also a list, and the first item
              of the sub-list can be chosen from "moblienetv2" and "mobilevit",
              which indicates the type of this layer sequence. If "mobilenetv2",
              the other items are the arguments of :attr:`~MobileViT.make_mobilenetv2_layer`
              (except ``in_channels``) and if "mobilevit", the other items are
              the arguments of :attr:`~MobileViT.make_mobilevit_layer`
              (except ``in_channels``).

            Defaults to "small".
        in_channels (int): Number of input image channels. Defaults to 3.
        stem_channels (int): Channels of stem layer.  Defaults to 16.
        last_exp_factor (int): Channels expand factor of last layer.
            Defaults to 4.
        out_indices (Sequence[int]): Output from which stages.
            Defaults to (4, ).
        frozen_stages (int): Stages to be frozen (all param fixed).
            Defaults to -1, which means not freezing any parameters.
        conv_cfg (dict, optional): Config dict for convolution layer.
            Defaults to None, which means using conv2d.
        norm_cfg (dict, optional): Config dict for normalization layer.
            Defaults to dict(type='BN').
        act_cfg (dict, optional): Config dict for activation layer.
            Defaults to dict(type='Swish').
        init_cfg (dict, optional): Initialization config dict.
    """  # noqa

    # Parameters to build layers. The first param is the type of layer.
    # For `mobilenetv2` layer, the rest params from left to right are:
    #     out channels, stride, num of blocks, expand_ratio.
    # For `mobilevit` layer, the rest params from left to right are:
    #     out channels, stride, transformer_channels, ffn channels,
    # num of transformer blocks, expand_ratio.
    arch_settings = {
        'small': [
            ['mobilenetv2', 32, 1, 1, 4],
            ['mobilenetv2', 64, 2, 3, 4],
            ['mobilevit', 96, 2, 144, 288, 2, 4],
            ['mobilevit', 128, 2, 192, 384, 4, 4],
            ['mobilevit', 160, 2, 240, 480, 3, 4],
        ],
        'x_small': [
            ['mobilenetv2', 32, 1, 1, 4],
            ['mobilenetv2', 48, 2, 3, 4],
            ['mobilevit', 64, 2, 96, 192, 2, 4],
            ['mobilevit', 80, 2, 120, 240, 4, 4],
            ['mobilevit', 96, 2, 144, 288, 3, 4],
        ],
        'xx_small': [
            ['mobilenetv2', 16, 1, 1, 2],
            ['mobilenetv2', 24, 2, 3, 2],
            ['mobilevit', 48, 2, 64, 128, 2, 2],
            ['mobilevit', 64, 2, 80, 160, 4, 2],
            ['mobilevit', 80, 2, 96, 192, 3, 2],
        ]
    }

    def __init__(self,
                 arch='small',
                 in_channels=3,
                 stem_channels=16,
                 last_exp_factor=4,
                 out_indices=(4, ),
                 frozen_stages=-1,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 act_cfg=dict(type='Swish'),
                 init_cfg=[
                     dict(type='Kaiming', layer=['Conv2d']),
                     dict(
                         type='Constant',
                         val=1,
                         layer=['_BatchNorm', 'GroupNorm'])
                 ]):
        super(MobileViT, self).__init__(init_cfg)
        if isinstance(arch, str):
            arch = arch.lower()
            assert arch in self.arch_settings, \
                f'Unavailable arch, please choose from ' \
                f'({set(self.arch_settings)}) or pass a list.'
            arch = self.arch_settings[arch]

        self.arch = arch
        self.num_stages = len(arch)

        # check out indices and frozen stages
        if isinstance(out_indices, int):
            out_indices = [out_indices]
        assert isinstance(out_indices, Sequence), \
            f'"out_indices" must by a sequence or int, ' \
            f'get {type(out_indices)} instead.'
        for i, index in enumerate(out_indices):
            if index < 0:
                out_indices[i] = self.num_stages + index
                assert out_indices[i] >= 0, f'Invalid out_indices {index}'
        self.out_indices = out_indices

        if frozen_stages not in range(-1, self.num_stages):
            raise ValueError('frozen_stages must be in range(-1, '
                             f'{self.num_stages}). '
                             f'But received {frozen_stages}')
        self.frozen_stages = frozen_stages

        _make_layer_func = {
            'mobilenetv2': self.make_mobilenetv2_layer,
            'mobilevit': self.make_mobilevit_layer,
        }

        self.stem = ConvModule(
            in_channels=in_channels,
            out_channels=stem_channels,
            kernel_size=3,
            stride=2,
            padding=1,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg)

        in_channels = stem_channels
        layers = []
        for i, layer_settings in enumerate(arch):
            layer_type, settings = layer_settings[0], layer_settings[1:]
            layer, out_channels = _make_layer_func[layer_type](in_channels,
                                                               *settings)
            layers.append(layer)
            in_channels = out_channels
        self.layers = nn.Sequential(*layers)

        self.conv_1x1_exp = ConvModule(
            in_channels=in_channels,
            out_channels=last_exp_factor * in_channels,
            kernel_size=1,
            stride=1,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg)

    @staticmethod
    def make_mobilevit_layer(in_channels,
                             out_channels,
                             stride,
                             transformer_dim,
                             ffn_dim,
                             num_transformer_blocks,
                             expand_ratio=4):
        """Build mobilevit layer, which consists of one InvertedResidual and
        one MobileVitBlock.

        Args:
            in_channels (int): The input channels.
            out_channels (int): The output channels.
            stride (int): The stride of the first 3x3 convolution in the
                ``InvertedResidual`` layers.
            transformer_dim (int): The channels of the transformer layers.
            ffn_dim (int): The mid-channels of the feedforward network in
                transformer layers.
            num_transformer_blocks (int): The number of transformer blocks.
            expand_ratio (int): adjusts number of channels of the hidden layer
                in ``InvertedResidual`` by this amount. Defaults to 4.
        """
        layer = []
        layer.append(
            InvertedResidual(
                in_channels=in_channels,
                out_channels=out_channels,
                stride=stride,
                expand_ratio=expand_ratio,
                act_cfg=dict(type='Swish'),
            ))
        layer.append(
            MobileVitBlock(
                in_channels=out_channels,
                transformer_dim=transformer_dim,
                ffn_dim=ffn_dim,
                out_channels=out_channels,
                num_transformer_blocks=num_transformer_blocks,
            ))
        return nn.Sequential(*layer), out_channels

    @staticmethod
    def make_mobilenetv2_layer(in_channels,
                               out_channels,
                               stride,
                               num_blocks,
                               expand_ratio=4):
        """Build mobilenetv2 layer, which consists of several InvertedResidual
        layers.

        Args:
            in_channels (int): The input channels.
            out_channels (int): The output channels.
            stride (int): The stride of the first 3x3 convolution in the
                ``InvertedResidual`` layers.
            num_blocks (int): The number of ``InvertedResidual`` blocks.
            expand_ratio (int): adjusts number of channels of the hidden layer
                in ``InvertedResidual`` by this amount. Defaults to 4.
        """
        layer = []
        for i in range(num_blocks):
            stride = stride if i == 0 else 1

            layer.append(
                InvertedResidual(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    stride=stride,
                    expand_ratio=expand_ratio,
                    act_cfg=dict(type='Swish'),
                ))
            in_channels = out_channels
        return nn.Sequential(*layer), out_channels

    def _freeze_stages(self):
        for i in range(0, self.frozen_stages):
            layer = self.layers[i]
            layer.eval()
            for param in layer.parameters():
                param.requires_grad = False

    def train(self, mode=True):
        super(MobileViT, self).train(mode)
        self._freeze_stages()

    def forward(self, x):
        x = self.stem(x)
        outs = []
        for i, layer in enumerate(self.layers):
            x = layer(x)
            if i == len(self.layers) - 1:
                x = self.conv_1x1_exp(x)
            if i in self.out_indices:
                outs.append(x)

        return tuple(outs)