Spaces:
Runtime error
Runtime error
File size: 18,945 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
# Copyright (c) OpenMMLab. All rights reserved.
# Modified from official impl https://github.com/apple/ml-mobileone/blob/main/mobileone.py # noqa: E501
from typing import Optional, Sequence
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import build_activation_layer, build_conv_layer, build_norm_layer
from mmengine.model import BaseModule, ModuleList, Sequential
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.registry import MODELS
from ..utils.se_layer import SELayer
from .base_backbone import BaseBackbone
class MobileOneBlock(BaseModule):
"""MobileOne block for MobileOne backbone.
Args:
in_channels (int): The input channels of the block.
out_channels (int): The output channels of the block.
kernel_size (int): The kernel size of the convs in the block. If the
kernel size is large than 1, there will be a ``branch_scale`` in
the block.
num_convs (int): Number of the convolution branches in the block.
stride (int): Stride of convolution layers. Defaults to 1.
padding (int): Padding of the convolution layers. Defaults to 1.
dilation (int): Dilation of the convolution layers. Defaults to 1.
groups (int): Groups of the convolution layers. Defaults to 1.
se_cfg (None or dict): The configuration of the se module.
Defaults to None.
norm_cfg (dict): Configuration to construct and config norm layer.
Defaults to ``dict(type='BN')``.
act_cfg (dict): Config dict for activation layer.
Defaults to ``dict(type='ReLU')``.
deploy (bool): Whether the model structure is in the deployment mode.
Defaults to False.
init_cfg (dict or list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
in_channels: int,
out_channels: int,
kernel_size: int,
num_convs: int,
stride: int = 1,
padding: int = 1,
dilation: int = 1,
groups: int = 1,
se_cfg: Optional[dict] = None,
conv_cfg: Optional[dict] = None,
norm_cfg: Optional[dict] = dict(type='BN'),
act_cfg: Optional[dict] = dict(type='ReLU'),
deploy: bool = False,
init_cfg: Optional[dict] = None):
super(MobileOneBlock, self).__init__(init_cfg)
assert se_cfg is None or isinstance(se_cfg, dict)
if se_cfg is not None:
self.se = SELayer(channels=out_channels, **se_cfg)
else:
self.se = nn.Identity()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.num_conv_branches = num_convs
self.stride = stride
self.padding = padding
self.se_cfg = se_cfg
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.deploy = deploy
self.groups = groups
self.dilation = dilation
if deploy:
self.branch_reparam = build_conv_layer(
conv_cfg,
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
groups=self.groups,
stride=stride,
padding=padding,
dilation=dilation,
bias=True)
else:
# judge if input shape and output shape are the same.
# If true, add a normalized identity shortcut.
if out_channels == in_channels and stride == 1:
self.branch_norm = build_norm_layer(norm_cfg, in_channels)[1]
else:
self.branch_norm = None
self.branch_scale = None
if kernel_size > 1:
self.branch_scale = self.create_conv_bn(kernel_size=1)
self.branch_conv_list = ModuleList()
for _ in range(num_convs):
self.branch_conv_list.append(
self.create_conv_bn(
kernel_size=kernel_size,
padding=padding,
dilation=dilation))
self.act = build_activation_layer(act_cfg)
def create_conv_bn(self, kernel_size, dilation=1, padding=0):
"""cearte a (conv + bn) Sequential layer."""
conv_bn = Sequential()
conv_bn.add_module(
'conv',
build_conv_layer(
self.conv_cfg,
in_channels=self.in_channels,
out_channels=self.out_channels,
kernel_size=kernel_size,
groups=self.groups,
stride=self.stride,
dilation=dilation,
padding=padding,
bias=False))
conv_bn.add_module(
'norm',
build_norm_layer(self.norm_cfg, num_features=self.out_channels)[1])
return conv_bn
def forward(self, x):
def _inner_forward(inputs):
if self.deploy:
return self.branch_reparam(inputs)
inner_out = 0
if self.branch_norm is not None:
inner_out = self.branch_norm(inputs)
if self.branch_scale is not None:
inner_out += self.branch_scale(inputs)
for branch_conv in self.branch_conv_list:
inner_out += branch_conv(inputs)
return inner_out
return self.act(self.se(_inner_forward(x)))
def switch_to_deploy(self):
"""Switch the model structure from training mode to deployment mode."""
if self.deploy:
return
assert self.norm_cfg['type'] == 'BN', \
"Switch is not allowed when norm_cfg['type'] != 'BN'."
reparam_weight, reparam_bias = self.reparameterize()
self.branch_reparam = build_conv_layer(
self.conv_cfg,
self.in_channels,
self.out_channels,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
bias=True)
self.branch_reparam.weight.data = reparam_weight
self.branch_reparam.bias.data = reparam_bias
for param in self.parameters():
param.detach_()
delattr(self, 'branch_conv_list')
if hasattr(self, 'branch_scale'):
delattr(self, 'branch_scale')
delattr(self, 'branch_norm')
self.deploy = True
def reparameterize(self):
"""Fuse all the parameters of all branches.
Returns:
tuple[torch.Tensor, torch.Tensor]: Parameters after fusion of all
branches. the first element is the weights and the second is
the bias.
"""
weight_conv, bias_conv = 0, 0
for branch_conv in self.branch_conv_list:
weight, bias = self._fuse_conv_bn(branch_conv)
weight_conv += weight
bias_conv += bias
weight_scale, bias_scale = 0, 0
if self.branch_scale is not None:
weight_scale, bias_scale = self._fuse_conv_bn(self.branch_scale)
# Pad scale branch kernel to match conv branch kernel size.
pad = self.kernel_size // 2
weight_scale = F.pad(weight_scale, [pad, pad, pad, pad])
weight_norm, bias_norm = 0, 0
if self.branch_norm:
tmp_conv_bn = self._norm_to_conv(self.branch_norm)
weight_norm, bias_norm = self._fuse_conv_bn(tmp_conv_bn)
return (weight_conv + weight_scale + weight_norm,
bias_conv + bias_scale + bias_norm)
def _fuse_conv_bn(self, branch):
"""Fuse the parameters in a branch with a conv and bn.
Args:
branch (mmcv.runner.Sequential): A branch with conv and bn.
Returns:
tuple[torch.Tensor, torch.Tensor]: The parameters obtained after
fusing the parameters of conv and bn in one branch.
The first element is the weight and the second is the bias.
"""
if branch is None:
return 0, 0
kernel = branch.conv.weight
running_mean = branch.norm.running_mean
running_var = branch.norm.running_var
gamma = branch.norm.weight
beta = branch.norm.bias
eps = branch.norm.eps
std = (running_var + eps).sqrt()
fused_weight = (gamma / std).reshape(-1, 1, 1, 1) * kernel
fused_bias = beta - running_mean * gamma / std
return fused_weight, fused_bias
def _norm_to_conv(self, branch_nrom):
"""Convert a norm layer to a conv-bn sequence towards
``self.kernel_size``.
Args:
branch (nn.BatchNorm2d): A branch only with bn in the block.
Returns:
(mmcv.runner.Sequential): a sequential with conv and bn.
"""
input_dim = self.in_channels // self.groups
conv_weight = torch.zeros(
(self.in_channels, input_dim, self.kernel_size, self.kernel_size),
dtype=branch_nrom.weight.dtype)
for i in range(self.in_channels):
conv_weight[i, i % input_dim, self.kernel_size // 2,
self.kernel_size // 2] = 1
conv_weight = conv_weight.to(branch_nrom.weight.device)
tmp_conv = self.create_conv_bn(kernel_size=self.kernel_size)
tmp_conv.conv.weight.data = conv_weight
tmp_conv.norm = branch_nrom
return tmp_conv
@MODELS.register_module()
class MobileOne(BaseBackbone):
"""MobileOne backbone.
A PyTorch impl of : `An Improved One millisecond Mobile Backbone
<https://arxiv.org/pdf/2206.04040.pdf>`_
Args:
arch (str | dict): MobileOne architecture. If use string, choose
from 's0', 's1', 's2', 's3' and 's4'. If use dict, it should
have below keys:
- num_blocks (Sequence[int]): Number of blocks in each stage.
- width_factor (Sequence[float]): Width factor in each stage.
- num_conv_branches (Sequence[int]): Number of conv branches
in each stage.
- num_se_blocks (Sequence[int]): Number of SE layers in each
stage, all the SE layers are placed in the subsequent order
in each stage.
Defaults to 's0'.
in_channels (int): Number of input image channels. Default: 3.
out_indices (Sequence[int] | int): Output from which stages.
Defaults to ``(3, )``.
frozen_stages (int): Stages to be frozen (all param fixed). -1 means
not freezing any parameters. Defaults to -1.
conv_cfg (dict | None): The config dict for conv layers.
Defaults to None.
norm_cfg (dict): The config dict for norm layers.
Defaults to ``dict(type='BN')``.
act_cfg (dict): Config dict for activation layer.
Defaults to ``dict(type='ReLU')``.
deploy (bool): Whether to switch the model structure to deployment
mode. Defaults to False.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Defaults to False.
init_cfg (dict or list[dict], optional): Initialization config dict.
Example:
>>> from mmcls.models import MobileOne
>>> import torch
>>> x = torch.rand(1, 3, 224, 224)
>>> model = MobileOne("s0", out_indices=(0, 1, 2, 3))
>>> model.eval()
>>> outputs = model(x)
>>> for out in outputs:
... print(tuple(out.shape))
(1, 48, 56, 56)
(1, 128, 28, 28)
(1, 256, 14, 14)
(1, 1024, 7, 7)
"""
arch_zoo = {
's0':
dict(
num_blocks=[2, 8, 10, 1],
width_factor=[0.75, 1.0, 1.0, 2.0],
num_conv_branches=[4, 4, 4, 4],
num_se_blocks=[0, 0, 0, 0]),
's1':
dict(
num_blocks=[2, 8, 10, 1],
width_factor=[1.5, 1.5, 2.0, 2.5],
num_conv_branches=[1, 1, 1, 1],
num_se_blocks=[0, 0, 0, 0]),
's2':
dict(
num_blocks=[2, 8, 10, 1],
width_factor=[1.5, 2.0, 2.5, 4.0],
num_conv_branches=[1, 1, 1, 1],
num_se_blocks=[0, 0, 0, 0]),
's3':
dict(
num_blocks=[2, 8, 10, 1],
width_factor=[2.0, 2.5, 3.0, 4.0],
num_conv_branches=[1, 1, 1, 1],
num_se_blocks=[0, 0, 0, 0]),
's4':
dict(
num_blocks=[2, 8, 10, 1],
width_factor=[3.0, 3.5, 3.5, 4.0],
num_conv_branches=[1, 1, 1, 1],
num_se_blocks=[0, 0, 5, 1])
}
def __init__(self,
arch,
in_channels=3,
out_indices=(3, ),
frozen_stages=-1,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
se_cfg=dict(ratio=16),
deploy=False,
norm_eval=False,
init_cfg=[
dict(type='Kaiming', layer=['Conv2d']),
dict(type='Constant', val=1, layer=['_BatchNorm'])
]):
super(MobileOne, self).__init__(init_cfg)
if isinstance(arch, str):
assert arch in self.arch_zoo, f'"arch": "{arch}"' \
f' is not one of the {list(self.arch_zoo.keys())}'
arch = self.arch_zoo[arch]
elif not isinstance(arch, dict):
raise TypeError('Expect "arch" to be either a string '
f'or a dict, got {type(arch)}')
self.arch = arch
for k, value in self.arch.items():
assert isinstance(value, list) and len(value) == 4, \
f'the value of {k} in arch must be list with 4 items.'
self.in_channels = in_channels
self.deploy = deploy
self.frozen_stages = frozen_stages
self.norm_eval = norm_eval
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.se_cfg = se_cfg
self.act_cfg = act_cfg
base_channels = [64, 128, 256, 512]
channels = min(64,
int(base_channels[0] * self.arch['width_factor'][0]))
self.stage0 = MobileOneBlock(
self.in_channels,
channels,
stride=2,
kernel_size=3,
num_convs=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
deploy=deploy)
self.in_planes = channels
self.stages = []
for i, num_blocks in enumerate(self.arch['num_blocks']):
planes = int(base_channels[i] * self.arch['width_factor'][i])
stage = self._make_stage(planes, num_blocks,
arch['num_se_blocks'][i],
arch['num_conv_branches'][i])
stage_name = f'stage{i + 1}'
self.add_module(stage_name, stage)
self.stages.append(stage_name)
if isinstance(out_indices, int):
out_indices = [out_indices]
assert isinstance(out_indices, Sequence), \
f'"out_indices" must by a sequence or int, ' \
f'get {type(out_indices)} instead.'
out_indices = list(out_indices)
for i, index in enumerate(out_indices):
if index < 0:
out_indices[i] = len(self.stages) + index
assert 0 <= out_indices[i] <= len(self.stages), \
f'Invalid out_indices {index}.'
self.out_indices = out_indices
def _make_stage(self, planes, num_blocks, num_se, num_conv_branches):
strides = [2] + [1] * (num_blocks - 1)
if num_se > num_blocks:
raise ValueError('Number of SE blocks cannot '
'exceed number of layers.')
blocks = []
for i in range(num_blocks):
use_se = False
if i >= (num_blocks - num_se):
use_se = True
blocks.append(
# Depthwise conv
MobileOneBlock(
in_channels=self.in_planes,
out_channels=self.in_planes,
kernel_size=3,
num_convs=num_conv_branches,
stride=strides[i],
padding=1,
groups=self.in_planes,
se_cfg=self.se_cfg if use_se else None,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
deploy=self.deploy))
blocks.append(
# Pointwise conv
MobileOneBlock(
in_channels=self.in_planes,
out_channels=planes,
kernel_size=1,
num_convs=num_conv_branches,
stride=1,
padding=0,
se_cfg=self.se_cfg if use_se else None,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
deploy=self.deploy))
self.in_planes = planes
return Sequential(*blocks)
def forward(self, x):
x = self.stage0(x)
outs = []
for i, stage_name in enumerate(self.stages):
stage = getattr(self, stage_name)
x = stage(x)
if i in self.out_indices:
outs.append(x)
return tuple(outs)
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.stage0.eval()
for param in self.stage0.parameters():
param.requires_grad = False
for i in range(self.frozen_stages):
stage = getattr(self, f'stage{i+1}')
stage.eval()
for param in stage.parameters():
param.requires_grad = False
def train(self, mode=True):
"""switch the mobile to train mode or not."""
super(MobileOne, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval()
def switch_to_deploy(self):
"""switch the model to deploy mode, which has smaller amount of
parameters and calculations."""
for m in self.modules():
if isinstance(m, MobileOneBlock):
m.switch_to_deploy()
self.deploy = True
|