File size: 18,945 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
# Copyright (c) OpenMMLab. All rights reserved.
# Modified from official impl https://github.com/apple/ml-mobileone/blob/main/mobileone.py  # noqa: E501
from typing import Optional, Sequence

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import build_activation_layer, build_conv_layer, build_norm_layer
from mmengine.model import BaseModule, ModuleList, Sequential
from torch.nn.modules.batchnorm import _BatchNorm

from mmcls.registry import MODELS
from ..utils.se_layer import SELayer
from .base_backbone import BaseBackbone


class MobileOneBlock(BaseModule):
    """MobileOne block for MobileOne backbone.

    Args:
        in_channels (int): The input channels of the block.
        out_channels (int): The output channels of the block.
        kernel_size (int): The kernel size of the convs in the block. If the
            kernel size is large than 1, there will be a ``branch_scale`` in
             the block.
        num_convs (int): Number of the convolution branches in the block.
        stride (int): Stride of convolution layers. Defaults to 1.
        padding (int): Padding of the convolution layers. Defaults to 1.
        dilation (int): Dilation of the convolution layers. Defaults to 1.
        groups (int): Groups of the convolution layers. Defaults to 1.
        se_cfg (None or dict): The configuration of the se module.
            Defaults to None.
        norm_cfg (dict): Configuration to construct and config norm layer.
            Defaults to ``dict(type='BN')``.
        act_cfg (dict): Config dict for activation layer.
            Defaults to ``dict(type='ReLU')``.
        deploy (bool): Whether the model structure is in the deployment mode.
            Defaults to False.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 kernel_size: int,
                 num_convs: int,
                 stride: int = 1,
                 padding: int = 1,
                 dilation: int = 1,
                 groups: int = 1,
                 se_cfg: Optional[dict] = None,
                 conv_cfg: Optional[dict] = None,
                 norm_cfg: Optional[dict] = dict(type='BN'),
                 act_cfg: Optional[dict] = dict(type='ReLU'),
                 deploy: bool = False,
                 init_cfg: Optional[dict] = None):
        super(MobileOneBlock, self).__init__(init_cfg)

        assert se_cfg is None or isinstance(se_cfg, dict)
        if se_cfg is not None:
            self.se = SELayer(channels=out_channels, **se_cfg)
        else:
            self.se = nn.Identity()

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.num_conv_branches = num_convs
        self.stride = stride
        self.padding = padding
        self.se_cfg = se_cfg
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.deploy = deploy
        self.groups = groups
        self.dilation = dilation

        if deploy:
            self.branch_reparam = build_conv_layer(
                conv_cfg,
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=kernel_size,
                groups=self.groups,
                stride=stride,
                padding=padding,
                dilation=dilation,
                bias=True)
        else:
            # judge if input shape and output shape are the same.
            # If true, add a normalized identity shortcut.
            if out_channels == in_channels and stride == 1:
                self.branch_norm = build_norm_layer(norm_cfg, in_channels)[1]
            else:
                self.branch_norm = None

            self.branch_scale = None
            if kernel_size > 1:
                self.branch_scale = self.create_conv_bn(kernel_size=1)

            self.branch_conv_list = ModuleList()
            for _ in range(num_convs):
                self.branch_conv_list.append(
                    self.create_conv_bn(
                        kernel_size=kernel_size,
                        padding=padding,
                        dilation=dilation))

        self.act = build_activation_layer(act_cfg)

    def create_conv_bn(self, kernel_size, dilation=1, padding=0):
        """cearte a (conv + bn) Sequential layer."""
        conv_bn = Sequential()
        conv_bn.add_module(
            'conv',
            build_conv_layer(
                self.conv_cfg,
                in_channels=self.in_channels,
                out_channels=self.out_channels,
                kernel_size=kernel_size,
                groups=self.groups,
                stride=self.stride,
                dilation=dilation,
                padding=padding,
                bias=False))
        conv_bn.add_module(
            'norm',
            build_norm_layer(self.norm_cfg, num_features=self.out_channels)[1])

        return conv_bn

    def forward(self, x):

        def _inner_forward(inputs):
            if self.deploy:
                return self.branch_reparam(inputs)

            inner_out = 0
            if self.branch_norm is not None:
                inner_out = self.branch_norm(inputs)

            if self.branch_scale is not None:
                inner_out += self.branch_scale(inputs)

            for branch_conv in self.branch_conv_list:
                inner_out += branch_conv(inputs)

            return inner_out

        return self.act(self.se(_inner_forward(x)))

    def switch_to_deploy(self):
        """Switch the model structure from training mode to deployment mode."""
        if self.deploy:
            return
        assert self.norm_cfg['type'] == 'BN', \
            "Switch is not allowed when norm_cfg['type'] != 'BN'."

        reparam_weight, reparam_bias = self.reparameterize()
        self.branch_reparam = build_conv_layer(
            self.conv_cfg,
            self.in_channels,
            self.out_channels,
            kernel_size=self.kernel_size,
            stride=self.stride,
            padding=self.padding,
            dilation=self.dilation,
            groups=self.groups,
            bias=True)
        self.branch_reparam.weight.data = reparam_weight
        self.branch_reparam.bias.data = reparam_bias

        for param in self.parameters():
            param.detach_()
        delattr(self, 'branch_conv_list')
        if hasattr(self, 'branch_scale'):
            delattr(self, 'branch_scale')
        delattr(self, 'branch_norm')

        self.deploy = True

    def reparameterize(self):
        """Fuse all the parameters of all branches.

        Returns:
            tuple[torch.Tensor, torch.Tensor]: Parameters after fusion of all
                branches. the first element is the weights and the second is
                the bias.
        """
        weight_conv, bias_conv = 0, 0
        for branch_conv in self.branch_conv_list:
            weight, bias = self._fuse_conv_bn(branch_conv)
            weight_conv += weight
            bias_conv += bias

        weight_scale, bias_scale = 0, 0
        if self.branch_scale is not None:
            weight_scale, bias_scale = self._fuse_conv_bn(self.branch_scale)
            # Pad scale branch kernel to match conv branch kernel size.
            pad = self.kernel_size // 2
            weight_scale = F.pad(weight_scale, [pad, pad, pad, pad])

        weight_norm, bias_norm = 0, 0
        if self.branch_norm:
            tmp_conv_bn = self._norm_to_conv(self.branch_norm)
            weight_norm, bias_norm = self._fuse_conv_bn(tmp_conv_bn)

        return (weight_conv + weight_scale + weight_norm,
                bias_conv + bias_scale + bias_norm)

    def _fuse_conv_bn(self, branch):
        """Fuse the parameters in a branch with a conv and bn.

        Args:
            branch (mmcv.runner.Sequential): A branch with conv and bn.

        Returns:
            tuple[torch.Tensor, torch.Tensor]: The parameters obtained after
                fusing the parameters of conv and bn in one branch.
                The first element is the weight and the second is the bias.
        """
        if branch is None:
            return 0, 0
        kernel = branch.conv.weight
        running_mean = branch.norm.running_mean
        running_var = branch.norm.running_var
        gamma = branch.norm.weight
        beta = branch.norm.bias
        eps = branch.norm.eps

        std = (running_var + eps).sqrt()
        fused_weight = (gamma / std).reshape(-1, 1, 1, 1) * kernel
        fused_bias = beta - running_mean * gamma / std

        return fused_weight, fused_bias

    def _norm_to_conv(self, branch_nrom):
        """Convert a norm layer to a conv-bn sequence towards
        ``self.kernel_size``.

        Args:
            branch (nn.BatchNorm2d): A branch only with bn in the block.

        Returns:
            (mmcv.runner.Sequential): a sequential with conv and bn.
        """
        input_dim = self.in_channels // self.groups
        conv_weight = torch.zeros(
            (self.in_channels, input_dim, self.kernel_size, self.kernel_size),
            dtype=branch_nrom.weight.dtype)

        for i in range(self.in_channels):
            conv_weight[i, i % input_dim, self.kernel_size // 2,
                        self.kernel_size // 2] = 1
        conv_weight = conv_weight.to(branch_nrom.weight.device)

        tmp_conv = self.create_conv_bn(kernel_size=self.kernel_size)
        tmp_conv.conv.weight.data = conv_weight
        tmp_conv.norm = branch_nrom
        return tmp_conv


@MODELS.register_module()
class MobileOne(BaseBackbone):
    """MobileOne backbone.

    A PyTorch impl of : `An Improved One millisecond Mobile Backbone
    <https://arxiv.org/pdf/2206.04040.pdf>`_

    Args:
        arch (str | dict): MobileOne architecture. If use string, choose
            from 's0', 's1', 's2', 's3' and 's4'. If use dict, it should
            have below keys:

            - num_blocks (Sequence[int]): Number of blocks in each stage.
            - width_factor (Sequence[float]): Width factor in each stage.
            - num_conv_branches (Sequence[int]): Number of conv branches
              in each stage.
            - num_se_blocks (Sequence[int]): Number of SE layers in each
              stage, all the SE layers are placed in the subsequent order
              in each stage.

            Defaults to 's0'.
        in_channels (int): Number of input image channels. Default: 3.
        out_indices (Sequence[int] | int): Output from which stages.
            Defaults to ``(3, )``.
        frozen_stages (int): Stages to be frozen (all param fixed). -1 means
            not freezing any parameters. Defaults to -1.
        conv_cfg (dict | None): The config dict for conv layers.
            Defaults to None.
        norm_cfg (dict): The config dict for norm layers.
            Defaults to ``dict(type='BN')``.
        act_cfg (dict): Config dict for activation layer.
            Defaults to ``dict(type='ReLU')``.
        deploy (bool): Whether to switch the model structure to deployment
            mode. Defaults to False.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Defaults to False.
        init_cfg (dict or list[dict], optional): Initialization config dict.

    Example:
        >>> from mmcls.models import MobileOne
        >>> import torch
        >>> x = torch.rand(1, 3, 224, 224)
        >>> model = MobileOne("s0", out_indices=(0, 1, 2, 3))
        >>> model.eval()
        >>> outputs = model(x)
        >>> for out in outputs:
        ...     print(tuple(out.shape))
        (1, 48, 56, 56)
        (1, 128, 28, 28)
        (1, 256, 14, 14)
        (1, 1024, 7, 7)
    """

    arch_zoo = {
        's0':
        dict(
            num_blocks=[2, 8, 10, 1],
            width_factor=[0.75, 1.0, 1.0, 2.0],
            num_conv_branches=[4, 4, 4, 4],
            num_se_blocks=[0, 0, 0, 0]),
        's1':
        dict(
            num_blocks=[2, 8, 10, 1],
            width_factor=[1.5, 1.5, 2.0, 2.5],
            num_conv_branches=[1, 1, 1, 1],
            num_se_blocks=[0, 0, 0, 0]),
        's2':
        dict(
            num_blocks=[2, 8, 10, 1],
            width_factor=[1.5, 2.0, 2.5, 4.0],
            num_conv_branches=[1, 1, 1, 1],
            num_se_blocks=[0, 0, 0, 0]),
        's3':
        dict(
            num_blocks=[2, 8, 10, 1],
            width_factor=[2.0, 2.5, 3.0, 4.0],
            num_conv_branches=[1, 1, 1, 1],
            num_se_blocks=[0, 0, 0, 0]),
        's4':
        dict(
            num_blocks=[2, 8, 10, 1],
            width_factor=[3.0, 3.5, 3.5, 4.0],
            num_conv_branches=[1, 1, 1, 1],
            num_se_blocks=[0, 0, 5, 1])
    }

    def __init__(self,
                 arch,
                 in_channels=3,
                 out_indices=(3, ),
                 frozen_stages=-1,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 act_cfg=dict(type='ReLU'),
                 se_cfg=dict(ratio=16),
                 deploy=False,
                 norm_eval=False,
                 init_cfg=[
                     dict(type='Kaiming', layer=['Conv2d']),
                     dict(type='Constant', val=1, layer=['_BatchNorm'])
                 ]):
        super(MobileOne, self).__init__(init_cfg)

        if isinstance(arch, str):
            assert arch in self.arch_zoo, f'"arch": "{arch}"' \
                f' is not one of the {list(self.arch_zoo.keys())}'
            arch = self.arch_zoo[arch]
        elif not isinstance(arch, dict):
            raise TypeError('Expect "arch" to be either a string '
                            f'or a dict, got {type(arch)}')

        self.arch = arch
        for k, value in self.arch.items():
            assert isinstance(value, list) and len(value) == 4, \
                f'the value of {k} in arch must be list with 4 items.'

        self.in_channels = in_channels
        self.deploy = deploy
        self.frozen_stages = frozen_stages
        self.norm_eval = norm_eval

        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.se_cfg = se_cfg
        self.act_cfg = act_cfg

        base_channels = [64, 128, 256, 512]
        channels = min(64,
                       int(base_channels[0] * self.arch['width_factor'][0]))
        self.stage0 = MobileOneBlock(
            self.in_channels,
            channels,
            stride=2,
            kernel_size=3,
            num_convs=1,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg,
            deploy=deploy)

        self.in_planes = channels
        self.stages = []
        for i, num_blocks in enumerate(self.arch['num_blocks']):
            planes = int(base_channels[i] * self.arch['width_factor'][i])

            stage = self._make_stage(planes, num_blocks,
                                     arch['num_se_blocks'][i],
                                     arch['num_conv_branches'][i])

            stage_name = f'stage{i + 1}'
            self.add_module(stage_name, stage)
            self.stages.append(stage_name)

        if isinstance(out_indices, int):
            out_indices = [out_indices]
        assert isinstance(out_indices, Sequence), \
            f'"out_indices" must by a sequence or int, ' \
            f'get {type(out_indices)} instead.'
        out_indices = list(out_indices)
        for i, index in enumerate(out_indices):
            if index < 0:
                out_indices[i] = len(self.stages) + index
            assert 0 <= out_indices[i] <= len(self.stages), \
                f'Invalid out_indices {index}.'
        self.out_indices = out_indices

    def _make_stage(self, planes, num_blocks, num_se, num_conv_branches):
        strides = [2] + [1] * (num_blocks - 1)
        if num_se > num_blocks:
            raise ValueError('Number of SE blocks cannot '
                             'exceed number of layers.')
        blocks = []
        for i in range(num_blocks):
            use_se = False
            if i >= (num_blocks - num_se):
                use_se = True

            blocks.append(
                # Depthwise conv
                MobileOneBlock(
                    in_channels=self.in_planes,
                    out_channels=self.in_planes,
                    kernel_size=3,
                    num_convs=num_conv_branches,
                    stride=strides[i],
                    padding=1,
                    groups=self.in_planes,
                    se_cfg=self.se_cfg if use_se else None,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg,
                    act_cfg=self.act_cfg,
                    deploy=self.deploy))

            blocks.append(
                # Pointwise conv
                MobileOneBlock(
                    in_channels=self.in_planes,
                    out_channels=planes,
                    kernel_size=1,
                    num_convs=num_conv_branches,
                    stride=1,
                    padding=0,
                    se_cfg=self.se_cfg if use_se else None,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg,
                    act_cfg=self.act_cfg,
                    deploy=self.deploy))

            self.in_planes = planes

        return Sequential(*blocks)

    def forward(self, x):
        x = self.stage0(x)
        outs = []
        for i, stage_name in enumerate(self.stages):
            stage = getattr(self, stage_name)
            x = stage(x)
            if i in self.out_indices:
                outs.append(x)

        return tuple(outs)

    def _freeze_stages(self):
        if self.frozen_stages >= 0:
            self.stage0.eval()
            for param in self.stage0.parameters():
                param.requires_grad = False
        for i in range(self.frozen_stages):
            stage = getattr(self, f'stage{i+1}')
            stage.eval()
            for param in stage.parameters():
                param.requires_grad = False

    def train(self, mode=True):
        """switch the mobile to train mode or not."""
        super(MobileOne, self).train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            for m in self.modules():
                if isinstance(m, _BatchNorm):
                    m.eval()

    def switch_to_deploy(self):
        """switch the model to deploy mode, which has smaller amount of
        parameters and calculations."""
        for m in self.modules():
            if isinstance(m, MobileOneBlock):
                m.switch_to_deploy()
        self.deploy = True