Spaces:
Runtime error
Runtime error
File size: 8,775 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# Copyright (c) OpenMMLab. All rights reserved.
from mmcv.cnn import ConvModule
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.registry import MODELS
from ..utils import InvertedResidual
from .base_backbone import BaseBackbone
@MODELS.register_module()
class MobileNetV3(BaseBackbone):
"""MobileNetV3 backbone.
Args:
arch (str): Architecture of mobilnetv3, from {small, large}.
Default: small.
conv_cfg (dict, optional): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
out_indices (None or Sequence[int]): Output from which stages.
Default: None, which means output tensors from final stage.
frozen_stages (int): Stages to be frozen (all param fixed).
Default: -1, which means not freezing any parameters.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
with_cp (bool): Use checkpoint or not. Using checkpoint will save
some memory while slowing down the training speed.
Default: False.
"""
# Parameters to build each block:
# [kernel size, mid channels, out channels, with_se, act type, stride]
arch_settings = {
'small': [[3, 16, 16, True, 'ReLU', 2],
[3, 72, 24, False, 'ReLU', 2],
[3, 88, 24, False, 'ReLU', 1],
[5, 96, 40, True, 'HSwish', 2],
[5, 240, 40, True, 'HSwish', 1],
[5, 240, 40, True, 'HSwish', 1],
[5, 120, 48, True, 'HSwish', 1],
[5, 144, 48, True, 'HSwish', 1],
[5, 288, 96, True, 'HSwish', 2],
[5, 576, 96, True, 'HSwish', 1],
[5, 576, 96, True, 'HSwish', 1]],
'small_075': [[3, 16, 16, True, 'ReLU', 2],
[3, 72, 24, False, 'ReLU', 2],
[3, 88, 24, False, 'ReLU', 1],
[5, 96, 32, True, 'HSwish', 2],
[5, 192, 32, True, 'HSwish', 1],
[5, 192, 32, True, 'HSwish', 1],
[5, 96, 40, True, 'HSwish', 1],
[5, 120, 40, True, 'HSwish', 1],
[5, 240, 72, True, 'HSwish', 2],
[5, 432, 72, True, 'HSwish', 1],
[5, 432, 72, True, 'HSwish', 1]],
'small_050': [[3, 16, 8, True, 'ReLU', 2],
[3, 40, 16, False, 'ReLU', 2],
[3, 56, 16, False, 'ReLU', 1],
[5, 64, 24, True, 'HSwish', 2],
[5, 144, 24, True, 'HSwish', 1],
[5, 144, 24, True, 'HSwish', 1],
[5, 72, 24, True, 'HSwish', 1],
[5, 72, 24, True, 'HSwish', 1],
[5, 144, 48, True, 'HSwish', 2],
[5, 288, 48, True, 'HSwish', 1],
[5, 288, 48, True, 'HSwish', 1]],
'large': [[3, 16, 16, False, 'ReLU', 1],
[3, 64, 24, False, 'ReLU', 2],
[3, 72, 24, False, 'ReLU', 1],
[5, 72, 40, True, 'ReLU', 2],
[5, 120, 40, True, 'ReLU', 1],
[5, 120, 40, True, 'ReLU', 1],
[3, 240, 80, False, 'HSwish', 2],
[3, 200, 80, False, 'HSwish', 1],
[3, 184, 80, False, 'HSwish', 1],
[3, 184, 80, False, 'HSwish', 1],
[3, 480, 112, True, 'HSwish', 1],
[3, 672, 112, True, 'HSwish', 1],
[5, 672, 160, True, 'HSwish', 2],
[5, 960, 160, True, 'HSwish', 1],
[5, 960, 160, True, 'HSwish', 1]]
} # yapf: disable
def __init__(self,
arch='small',
conv_cfg=None,
norm_cfg=dict(type='BN', eps=0.001, momentum=0.01),
out_indices=None,
frozen_stages=-1,
norm_eval=False,
with_cp=False,
init_cfg=[
dict(
type='Kaiming',
layer=['Conv2d'],
nonlinearity='leaky_relu'),
dict(type='Normal', layer=['Linear'], std=0.01),
dict(type='Constant', layer=['BatchNorm2d'], val=1)
]):
super(MobileNetV3, self).__init__(init_cfg)
assert arch in self.arch_settings
if out_indices is None:
out_indices = (12, ) if 'small' in arch else (16, )
for order, index in enumerate(out_indices):
if index not in range(0, len(self.arch_settings[arch]) + 2):
raise ValueError(
'the item in out_indices must in '
f'range(0, {len(self.arch_settings[arch]) + 2}). '
f'But received {index}')
if frozen_stages not in range(-1, len(self.arch_settings[arch]) + 2):
raise ValueError('frozen_stages must be in range(-1, '
f'{len(self.arch_settings[arch]) + 2}). '
f'But received {frozen_stages}')
self.arch = arch
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.out_indices = out_indices
self.frozen_stages = frozen_stages
self.norm_eval = norm_eval
self.with_cp = with_cp
self.layers = self._make_layer()
self.feat_dim = self.arch_settings[arch][-1][1]
def _make_layer(self):
layers = []
layer_setting = self.arch_settings[self.arch]
in_channels = 16
layer = ConvModule(
in_channels=3,
out_channels=in_channels,
kernel_size=3,
stride=2,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=dict(type='HSwish'))
self.add_module('layer0', layer)
layers.append('layer0')
for i, params in enumerate(layer_setting):
(kernel_size, mid_channels, out_channels, with_se, act,
stride) = params
if with_se:
se_cfg = dict(
channels=mid_channels,
ratio=4,
act_cfg=(dict(type='ReLU'),
dict(
type='HSigmoid',
bias=3,
divisor=6,
min_value=0,
max_value=1)))
else:
se_cfg = None
layer = InvertedResidual(
in_channels=in_channels,
out_channels=out_channels,
mid_channels=mid_channels,
kernel_size=kernel_size,
stride=stride,
se_cfg=se_cfg,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=dict(type=act),
with_cp=self.with_cp)
in_channels = out_channels
layer_name = 'layer{}'.format(i + 1)
self.add_module(layer_name, layer)
layers.append(layer_name)
# Build the last layer before pooling
# TODO: No dilation
layer = ConvModule(
in_channels=in_channels,
out_channels=mid_channels,
kernel_size=1,
stride=1,
padding=0,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=dict(type='HSwish'))
layer_name = 'layer{}'.format(len(layer_setting) + 1)
self.add_module(layer_name, layer)
layers.append(layer_name)
return layers
def forward(self, x):
outs = []
for i, layer_name in enumerate(self.layers):
layer = getattr(self, layer_name)
x = layer(x)
if i in self.out_indices:
outs.append(x)
return tuple(outs)
def _freeze_stages(self):
for i in range(0, self.frozen_stages + 1):
layer = getattr(self, f'layer{i}')
layer.eval()
for param in layer.parameters():
param.requires_grad = False
def train(self, mode=True):
super(MobileNetV3, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval()
|