File size: 16,432 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Sequence, Tuple

import torch
import torch.nn as nn
from mmcv.cnn.bricks import ConvModule, DropPath
from mmengine.model import Sequential
from torch import Tensor

from mmcls.models.backbones.base_backbone import BaseBackbone
from mmcls.models.backbones.efficientnet import EdgeResidual as FusedMBConv
from mmcls.models.utils import InvertedResidual as MBConv
from mmcls.registry import MODELS


class EnhancedConvModule(ConvModule):
    """ConvModule with short-cut and droppath.

    Args:
        in_channels (int): Number of channels in the input feature map.
            Same as that in ``nn._ConvNd``.
        out_channels (int): Number of channels produced by the convolution.
            Same as that in ``nn._ConvNd``.
        kernel_size (int | tuple[int]): Size of the convolving kernel.
            Same as that in ``nn._ConvNd``.
        stride (int | tuple[int]): Stride of the convolution.
            Same as that in ``nn._ConvNd``.
        has_skip (bool): Whether there is short-cut. Defaults to False.
        drop_path_rate (float): Stochastic depth rate. Default 0.0.
        padding (int | tuple[int]): Zero-padding added to both sides of
            the input. Same as that in ``nn._ConvNd``.
        dilation (int | tuple[int]): Spacing between kernel elements.
            Same as that in ``nn._ConvNd``.
        groups (int): Number of blocked connections from input channels to
            output channels. Same as that in ``nn._ConvNd``.
        bias (bool | str): If specified as `auto`, it will be decided by the
            norm_cfg. Bias will be set as True if `norm_cfg` is None, otherwise
            False. Default: "auto".
        conv_cfg (dict): Config dict for convolution layer. Default: None,
            which means using conv2d.
        norm_cfg (dict): Config dict for normalization layer. Default: None.
        act_cfg (dict): Config dict for activation layer.
            Default: dict(type='ReLU').
        inplace (bool): Whether to use inplace mode for activation.
            Default: True.
        with_spectral_norm (bool): Whether use spectral norm in conv module.
            Default: False.
        padding_mode (str): If the `padding_mode` has not been supported by
            current `Conv2d` in PyTorch, we will use our own padding layer
            instead. Currently, we support ['zeros', 'circular'] with official
            implementation and ['reflect'] with our own implementation.
            Default: 'zeros'.
        order (tuple[str]): The order of conv/norm/activation layers. It is a
            sequence of "conv", "norm" and "act". Common examples are
            ("conv", "norm", "act") and ("act", "conv", "norm").
            Default: ('conv', 'norm', 'act').
    """

    def __init__(self, *args, has_skip=False, drop_path_rate=0, **kwargs):
        super().__init__(*args, **kwargs)
        self.has_skip = has_skip
        if self.has_skip and (self.in_channels != self.out_channels
                              or self.stride != (1, 1)):
            raise ValueError('the stride must be 1 and the `in_channels` and'
                             ' `out_channels` must be the same , when '
                             '`has_skip` is True in `EnhancedConvModule` .')
        self.drop_path = DropPath(
            drop_path_rate) if drop_path_rate else nn.Identity()

    def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
        short_cut = x
        x = super().forward(x, **kwargs)
        if self.has_skip:
            x = self.drop_path(x) + short_cut
        return x


@MODELS.register_module()
class EfficientNetV2(BaseBackbone):
    """EfficientNetV2 backbone.

    A PyTorch implementation of EfficientNetV2 introduced by:
    `EfficientNetV2: Smaller Models and Faster Training
    <https://arxiv.org/abs/2104.00298>`_

    Args:
        arch (str): Architecture of efficientnetv2. Defaults to s.
        in_channels (int): Number of input image channels. Defaults to 3.
        drop_path_rate (float): The ratio of the stochastic depth.
            Defaults to 0.0.
        out_indices (Sequence[int]): Output from which stages.
            Defaults to (-1, ).
        frozen_stages (int): Stages to be frozen (all param fixed).
            Defaults to 0, which means not freezing any parameters.
        conv_cfg (dict): Config dict for convolution layer.
            Defaults to None, which means using conv2d.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to dict(type='BN').
        act_cfg (dict): Config dict for activation layer.
            Defaults to dict(type='Swish').
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Defaults to False.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Defaults to False.
    """

    # Parameters to build layers. From left to right:
    # - repeat (int): The repeat number of the block in the layer
    # - kernel_size (int): The kernel size of the layer
    # - stride (int): The stride of the first block of the layer
    # - expand_ratio (int, float): The expand_ratio of the mid_channels
    # - in_channel (int): The number of in_channels of the layer
    # - out_channel (int): The number of out_channels of the layer
    # - se_ratio (float): The sequeeze ratio of SELayer.
    # - block_type (int): -2: ConvModule, -1: EnhancedConvModule,
    #                      0: FusedMBConv, 1: MBConv
    arch_settings = {
        **dict.fromkeys(['small', 's'], [[2, 3, 1, 1, 24, 24, 0.0, -1],
                                         [4, 3, 2, 4, 24, 48, 0.0, 0],
                                         [4, 3, 2, 4, 48, 64, 0.0, 0],
                                         [6, 3, 2, 4, 64, 128, 0.25, 1],
                                         [9, 3, 1, 6, 128, 160, 0.25, 1],
                                         [15, 3, 2, 6, 160, 256, 0.25, 1],
                                         [1, 1, 1, 1, 256, 1280, 0.0, -2]]),
        **dict.fromkeys(['m', 'medium'], [[3, 3, 1, 1, 24, 24, 0.0, -1],
                                          [5, 3, 2, 4, 24, 48, 0.0, 0],
                                          [5, 3, 2, 4, 48, 80, 0.0, 0],
                                          [7, 3, 2, 4, 80, 160, 0.25, 1],
                                          [14, 3, 1, 6, 160, 176, 0.25, 1],
                                          [18, 3, 2, 6, 176, 304, 0.25, 1],
                                          [5, 3, 1, 6, 304, 512, 0.25, 1],
                                          [1, 1, 1, 1, 512, 1280, 0.0, -2]]),
        **dict.fromkeys(['l', 'large'], [[4, 3, 1, 1, 32, 32, 0.0, -1],
                                         [7, 3, 2, 4, 32, 64, 0.0, 0],
                                         [7, 3, 2, 4, 64, 96, 0.0, 0],
                                         [10, 3, 2, 4, 96, 192, 0.25, 1],
                                         [19, 3, 1, 6, 192, 224, 0.25, 1],
                                         [25, 3, 2, 6, 224, 384, 0.25, 1],
                                         [7, 3, 1, 6, 384, 640, 0.25, 1],
                                         [1, 1, 1, 1, 640, 1280, 0.0, -2]]),
        **dict.fromkeys(['xl'], [[4, 3, 1, 1, 32, 32, 0.0, -1],
                                 [8, 3, 2, 4, 32, 64, 0.0, 0],
                                 [8, 3, 2, 4, 64, 96, 0.0, 0],
                                 [16, 3, 2, 4, 96, 192, 0.25, 1],
                                 [24, 3, 1, 6, 192, 256, 0.25, 1],
                                 [32, 3, 2, 6, 256, 512, 0.25, 1],
                                 [8, 3, 1, 6, 512, 640, 0.25, 1],
                                 [1, 1, 1, 1, 640, 1280, 0.0, -2]]),
        **dict.fromkeys(['b0'], [[1, 3, 1, 1, 32, 16, 0.0, -1],
                                 [2, 3, 2, 4, 16, 32, 0.0, 0],
                                 [2, 3, 2, 4, 32, 48, 0.0, 0],
                                 [3, 3, 2, 4, 48, 96, 0.25, 1],
                                 [5, 3, 1, 6, 96, 112, 0.25, 1],
                                 [8, 3, 2, 6, 112, 192, 0.25, 1],
                                 [1, 1, 1, 1, 192, 1280, 0.0, -2]]),
        **dict.fromkeys(['b1'], [[2, 3, 1, 1, 32, 16, 0.0, -1],
                                 [3, 3, 2, 4, 16, 32, 0.0, 0],
                                 [3, 3, 2, 4, 32, 48, 0.0, 0],
                                 [4, 3, 2, 4, 48, 96, 0.25, 1],
                                 [6, 3, 1, 6, 96, 112, 0.25, 1],
                                 [9, 3, 2, 6, 112, 192, 0.25, 1],
                                 [1, 1, 1, 1, 192, 1280, 0.0, -2]]),
        **dict.fromkeys(['b2'], [[2, 3, 1, 1, 32, 16, 0.0, -1],
                                 [3, 3, 2, 4, 16, 32, 0.0, 0],
                                 [3, 3, 2, 4, 32, 56, 0.0, 0],
                                 [4, 3, 2, 4, 56, 104, 0.25, 1],
                                 [6, 3, 1, 6, 104, 120, 0.25, 1],
                                 [10, 3, 2, 6, 120, 208, 0.25, 1],
                                 [1, 1, 1, 1, 208, 1408, 0.0, -2]]),
        **dict.fromkeys(['b3'], [[2, 3, 1, 1, 40, 16, 0.0, -1],
                                 [3, 3, 2, 4, 16, 40, 0.0, 0],
                                 [3, 3, 2, 4, 40, 56, 0.0, 0],
                                 [5, 3, 2, 4, 56, 112, 0.25, 1],
                                 [7, 3, 1, 6, 112, 136, 0.25, 1],
                                 [12, 3, 2, 6, 136, 232, 0.25, 1],
                                 [1, 1, 1, 1, 232, 1536, 0.0, -2]])
    }

    def __init__(self,
                 arch: str = 's',
                 in_channels: int = 3,
                 drop_path_rate: float = 0.,
                 out_indices: Sequence[int] = (-1, ),
                 frozen_stages: int = 0,
                 conv_cfg=dict(type='Conv2dAdaptivePadding'),
                 norm_cfg=dict(type='BN', eps=1e-3, momentum=0.1),
                 act_cfg=dict(type='Swish'),
                 norm_eval: bool = False,
                 with_cp: bool = False,
                 init_cfg=[
                     dict(type='Kaiming', layer='Conv2d'),
                     dict(
                         type='Constant',
                         layer=['_BatchNorm', 'GroupNorm'],
                         val=1)
                 ]):
        super(EfficientNetV2, self).__init__(init_cfg)
        assert arch in self.arch_settings, \
            f'"{arch}" is not one of the arch_settings ' \
            f'({", ".join(self.arch_settings.keys())})'
        self.arch = self.arch_settings[arch]
        if frozen_stages not in range(len(self.arch) + 1):
            raise ValueError('frozen_stages must be in range(0, '
                             f'{len(self.arch)}), but get {frozen_stages}')
        self.drop_path_rate = drop_path_rate
        self.frozen_stages = frozen_stages
        self.norm_eval = norm_eval
        self.with_cp = with_cp

        self.layers = nn.ModuleList()
        assert self.arch[-1][-1] == -2, \
            f'the last block_type of `arch_setting` must be -2 ,' \
            f'but get `{self.arch[-1][-1]}`'
        self.in_channels = in_channels
        self.out_channels = self.arch[-1][5]
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg

        self.make_layers()

        # there len(slef.arch) + 2 layers in the backbone
        # including: the first + len(self.arch) layers + the last
        if isinstance(out_indices, int):
            out_indices = [out_indices]
        assert isinstance(out_indices, Sequence), \
            f'"out_indices" must by a sequence or int, ' \
            f'get {type(out_indices)} instead.'
        out_indices = list(out_indices)
        for i, index in enumerate(out_indices):
            if index < 0:
                out_indices[i] = len(self.layers) + index
            assert 0 <= out_indices[i] <= len(self.layers), \
                f'Invalid out_indices {index}.'
        self.out_indices = out_indices

    def make_layers(self, ):
        # make the first layer
        self.layers.append(
            ConvModule(
                in_channels=self.in_channels,
                out_channels=self.arch[0][4],
                kernel_size=3,
                stride=2,
                conv_cfg=self.conv_cfg,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg))

        in_channels = self.arch[0][4]
        layer_setting = self.arch[:-1]

        total_num_blocks = sum([x[0] for x in layer_setting])
        block_idx = 0
        dpr = [
            x.item()
            for x in torch.linspace(0, self.drop_path_rate, total_num_blocks)
        ]  # stochastic depth decay rule

        for layer_cfg in layer_setting:
            layer = []
            (repeat, kernel_size, stride, expand_ratio, _, out_channels,
             se_ratio, block_type) = layer_cfg
            for i in range(repeat):
                stride = stride if i == 0 else 1
                if block_type == -1:
                    has_skip = stride == 1 and in_channels == out_channels
                    droppath_rate = dpr[block_idx] if has_skip else 0.0
                    layer.append(
                        EnhancedConvModule(
                            in_channels=in_channels,
                            out_channels=out_channels,
                            kernel_size=kernel_size,
                            has_skip=has_skip,
                            drop_path_rate=droppath_rate,
                            stride=stride,
                            padding=1,
                            conv_cfg=None,
                            norm_cfg=self.norm_cfg,
                            act_cfg=self.act_cfg))
                    in_channels = out_channels
                else:
                    mid_channels = int(in_channels * expand_ratio)
                    se_cfg = None
                    if block_type != 0 and se_ratio > 0:
                        se_cfg = dict(
                            channels=mid_channels,
                            ratio=expand_ratio * (1.0 / se_ratio),
                            divisor=1,
                            act_cfg=(self.act_cfg, dict(type='Sigmoid')))
                    block = FusedMBConv if block_type == 0 else MBConv
                    conv_cfg = self.conv_cfg if stride == 2 else None
                    layer.append(
                        block(
                            in_channels=in_channels,
                            out_channels=out_channels,
                            mid_channels=mid_channels,
                            kernel_size=kernel_size,
                            stride=stride,
                            se_cfg=se_cfg,
                            conv_cfg=conv_cfg,
                            norm_cfg=self.norm_cfg,
                            act_cfg=self.act_cfg,
                            drop_path_rate=dpr[block_idx],
                            with_cp=self.with_cp))
                    in_channels = out_channels
                block_idx += 1
            self.layers.append(Sequential(*layer))

        # make the last layer
        self.layers.append(
            ConvModule(
                in_channels=in_channels,
                out_channels=self.out_channels,
                kernel_size=self.arch[-1][1],
                stride=self.arch[-1][2],
                conv_cfg=self.conv_cfg,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg))

    def forward(self, x: Tensor) -> Tuple[Tensor]:
        outs = []
        for i, layer in enumerate(self.layers):
            x = layer(x)
            if i in self.out_indices:
                outs.append(x)

        return tuple(outs)

    def _freeze_stages(self):
        for i in range(self.frozen_stages):
            m = self.layers[i]
            m.eval()
            for param in m.parameters():
                param.requires_grad = False

    def train(self, mode=True):
        super(EfficientNetV2, self).train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            for m in self.modules():
                if isinstance(m, nn.BatchNorm2d):
                    m.eval()