Spaces:
Runtime error
Runtime error
File size: 30,635 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 |
# Copyright (c) OpenMMLab. All rights reserved.
from copy import deepcopy
from typing import Sequence, Tuple
import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import build_conv_layer, build_norm_layer
from mmcv.cnn.bricks import Conv2d
from mmcv.cnn.bricks.transformer import FFN, AdaptivePadding, PatchEmbed
from mmengine.model import BaseModule, ModuleList
from mmengine.utils import to_2tuple
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm
from mmcls.models.backbones.base_backbone import BaseBackbone
from mmcls.registry import MODELS
from ..utils import ShiftWindowMSA
class DaViTWindowMSA(BaseModule):
"""Window based multi-head self-attention (W-MSA) module for DaViT.
The differences between DaViTWindowMSA & WindowMSA:
1. Without relative position bias.
Args:
embed_dims (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
Defaults to True.
qk_scale (float, optional): Override default qk scale of
``head_dim ** -0.5`` if set. Defaults to None.
attn_drop (float, optional): Dropout ratio of attention weight.
Defaults to 0.
proj_drop (float, optional): Dropout ratio of output. Defaults to 0.
init_cfg (dict, optional): The extra config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
window_size,
num_heads,
qkv_bias=True,
qk_scale=None,
attn_drop=0.,
proj_drop=0.,
init_cfg=None):
super().__init__(init_cfg)
self.embed_dims = embed_dims
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_embed_dims = embed_dims // num_heads
self.scale = qk_scale or head_embed_dims**-0.5
self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(embed_dims, embed_dims)
self.proj_drop = nn.Dropout(proj_drop)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
"""
Args:
x (tensor): input features with shape of (num_windows*B, N, C)
mask (tensor, Optional): mask with shape of (num_windows, Wh*Ww,
Wh*Ww), value should be between (-inf, 0].
"""
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads,
C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[
2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N,
N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
@staticmethod
def double_step_seq(step1, len1, step2, len2):
seq1 = torch.arange(0, step1 * len1, step1)
seq2 = torch.arange(0, step2 * len2, step2)
return (seq1[:, None] + seq2[None, :]).reshape(1, -1)
class ConvPosEnc(BaseModule):
"""DaViT conv pos encode block.
Args:
embed_dims (int): Number of input channels.
kernel_size (int): The kernel size of the first convolution.
Defaults to 3.
init_cfg (dict, optional): The extra config for initialization.
Defaults to None.
"""
def __init__(self, embed_dims, kernel_size=3, init_cfg=None):
super(ConvPosEnc, self).__init__(init_cfg)
self.proj = Conv2d(
embed_dims,
embed_dims,
kernel_size,
stride=1,
padding=kernel_size // 2,
groups=embed_dims)
def forward(self, x, size: Tuple[int, int]):
B, N, C = x.shape
H, W = size
assert N == H * W
feat = x.transpose(1, 2).view(B, C, H, W)
feat = self.proj(feat)
feat = feat.flatten(2).transpose(1, 2)
x = x + feat
return x
class DaViTDownSample(BaseModule):
"""DaViT down sampole block.
Args:
in_channels (int): The number of input channels.
out_channels (int): The number of output channels.
conv_type (str): The type of convolution
to generate patch embedding. Default: "Conv2d".
kernel_size (int): The kernel size of the first convolution.
Defaults to 2.
stride (int): The stride of the second convluation module.
Defaults to 2.
padding (int | tuple | string ): The padding length of
embedding conv. When it is a string, it means the mode
of adaptive padding, support "same" and "corner" now.
Defaults to "corner".
dilation (int): Dilation of the convolution layers. Defaults to 1.
bias (bool): Bias of embed conv. Default: True.
norm_cfg (dict, optional): Config dict for normalization layer.
Defaults to ``dict(type='LN')``.
init_cfg (dict, optional): The extra config for initialization.
Defaults to None.
"""
def __init__(self,
in_channels,
out_channels,
conv_type='Conv2d',
kernel_size=2,
stride=2,
padding='same',
dilation=1,
bias=True,
norm_cfg=None,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.out_channels = out_channels
if stride is None:
stride = kernel_size
kernel_size = to_2tuple(kernel_size)
stride = to_2tuple(stride)
dilation = to_2tuple(dilation)
if isinstance(padding, str):
self.adaptive_padding = AdaptivePadding(
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding)
# disable the padding of conv
padding = 0
else:
self.adaptive_padding = None
padding = to_2tuple(padding)
self.projection = build_conv_layer(
dict(type=conv_type),
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias)
if norm_cfg is not None:
self.norm = build_norm_layer(norm_cfg, in_channels)[1]
else:
self.norm = None
def forward(self, x, input_size):
if self.adaptive_padding:
x = self.adaptive_padding(x)
H, W = input_size
B, L, C = x.shape
assert L == H * W, 'input feature has wrong size'
x = self.norm(x)
x = x.reshape(B, H, W, C).permute(0, 3, 1, 2).contiguous()
x = self.projection(x)
output_size = (x.size(2), x.size(3))
x = x.flatten(2).transpose(1, 2)
return x, output_size
class ChannelAttention(BaseModule):
"""DaViT channel attention.
Args:
embed_dims (int): Number of input channels.
num_heads (int): Number of attention heads.
qkv_bias (bool): enable bias for qkv if True. Defaults to True.
init_cfg (dict, optional): The extra config for initialization.
Defaults to None.
"""
def __init__(self, embed_dims, num_heads=8, qkv_bias=False, init_cfg=None):
super().__init__(init_cfg)
self.embed_dims = embed_dims
self.num_heads = num_heads
self.head_dims = embed_dims // num_heads
self.scale = self.head_dims**-0.5
self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias)
self.proj = nn.Linear(embed_dims, embed_dims)
def forward(self, x):
B, N, _ = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
self.head_dims).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
k = k * self.scale
attention = k.transpose(-1, -2) @ v
attention = attention.softmax(dim=-1)
x = (attention @ q.transpose(-1, -2)).transpose(-1, -2)
x = x.transpose(1, 2).reshape(B, N, self.embed_dims)
x = self.proj(x)
return x
class ChannelBlock(BaseModule):
"""DaViT channel attention block.
Args:
embed_dims (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (int): The height and width of the window. Defaults to 7.
ffn_ratio (float): The expansion ratio of feedforward network hidden
layer channels. Defaults to 4.
qkv_bias (bool): enable bias for qkv if True. Defaults to True.
drop_path (float): The drop path rate after attention and ffn.
Defaults to 0.
ffn_cfgs (dict): The extra config of FFN. Defaults to empty dict.
norm_cfg (dict): The config of norm layers.
Defaults to ``dict(type='LN')``.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
init_cfg (dict, optional): The extra config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
num_heads,
ffn_ratio=4.,
qkv_bias=False,
drop_path=0.,
ffn_cfgs=dict(),
norm_cfg=dict(type='LN'),
with_cp=False,
init_cfg=None):
super().__init__(init_cfg)
self.with_cp = with_cp
self.cpe1 = ConvPosEnc(embed_dims=embed_dims, kernel_size=3)
self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1]
self.attn = ChannelAttention(
embed_dims, num_heads=num_heads, qkv_bias=qkv_bias)
self.cpe2 = ConvPosEnc(embed_dims=embed_dims, kernel_size=3)
_ffn_cfgs = {
'embed_dims': embed_dims,
'feedforward_channels': int(embed_dims * ffn_ratio),
'num_fcs': 2,
'ffn_drop': 0,
'dropout_layer': dict(type='DropPath', drop_prob=drop_path),
'act_cfg': dict(type='GELU'),
**ffn_cfgs
}
self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1]
self.ffn = FFN(**_ffn_cfgs)
def forward(self, x, hw_shape):
def _inner_forward(x):
x = self.cpe1(x, hw_shape)
identity = x
x = self.norm1(x)
x = self.attn(x)
x = x + identity
x = self.cpe2(x, hw_shape)
identity = x
x = self.norm2(x)
x = self.ffn(x, identity=identity)
return x
if self.with_cp and x.requires_grad:
x = cp.checkpoint(_inner_forward, x)
else:
x = _inner_forward(x)
return x
class SpatialBlock(BaseModule):
"""DaViT spatial attention block.
Args:
embed_dims (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (int): The height and width of the window. Defaults to 7.
ffn_ratio (float): The expansion ratio of feedforward network hidden
layer channels. Defaults to 4.
qkv_bias (bool): enable bias for qkv if True. Defaults to True.
drop_path (float): The drop path rate after attention and ffn.
Defaults to 0.
pad_small_map (bool): If True, pad the small feature map to the window
size, which is common used in detection and segmentation. If False,
avoid shifting window and shrink the window size to the size of
feature map, which is common used in classification.
Defaults to False.
attn_cfgs (dict): The extra config of Shift Window-MSA.
Defaults to empty dict.
ffn_cfgs (dict): The extra config of FFN. Defaults to empty dict.
norm_cfg (dict): The config of norm layers.
Defaults to ``dict(type='LN')``.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
init_cfg (dict, optional): The extra config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
num_heads,
window_size=7,
ffn_ratio=4.,
qkv_bias=True,
drop_path=0.,
pad_small_map=False,
attn_cfgs=dict(),
ffn_cfgs=dict(),
norm_cfg=dict(type='LN'),
with_cp=False,
init_cfg=None):
super(SpatialBlock, self).__init__(init_cfg)
self.with_cp = with_cp
self.cpe1 = ConvPosEnc(embed_dims=embed_dims, kernel_size=3)
self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1]
_attn_cfgs = {
'embed_dims': embed_dims,
'num_heads': num_heads,
'shift_size': 0,
'window_size': window_size,
'dropout_layer': dict(type='DropPath', drop_prob=drop_path),
'qkv_bias': qkv_bias,
'pad_small_map': pad_small_map,
'window_msa': DaViTWindowMSA,
**attn_cfgs
}
self.attn = ShiftWindowMSA(**_attn_cfgs)
self.cpe2 = ConvPosEnc(embed_dims=embed_dims, kernel_size=3)
_ffn_cfgs = {
'embed_dims': embed_dims,
'feedforward_channels': int(embed_dims * ffn_ratio),
'num_fcs': 2,
'ffn_drop': 0,
'dropout_layer': dict(type='DropPath', drop_prob=drop_path),
'act_cfg': dict(type='GELU'),
**ffn_cfgs
}
self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1]
self.ffn = FFN(**_ffn_cfgs)
def forward(self, x, hw_shape):
def _inner_forward(x):
x = self.cpe1(x, hw_shape)
identity = x
x = self.norm1(x)
x = self.attn(x, hw_shape)
x = x + identity
x = self.cpe2(x, hw_shape)
identity = x
x = self.norm2(x)
x = self.ffn(x, identity=identity)
return x
if self.with_cp and x.requires_grad:
x = cp.checkpoint(_inner_forward, x)
else:
x = _inner_forward(x)
return x
class DaViTBlock(BaseModule):
"""DaViT block.
Args:
embed_dims (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (int): The height and width of the window. Defaults to 7.
ffn_ratio (float): The expansion ratio of feedforward network hidden
layer channels. Defaults to 4.
qkv_bias (bool): enable bias for qkv if True. Defaults to True.
drop_path (float): The drop path rate after attention and ffn.
Defaults to 0.
pad_small_map (bool): If True, pad the small feature map to the window
size, which is common used in detection and segmentation. If False,
avoid shifting window and shrink the window size to the size of
feature map, which is common used in classification.
Defaults to False.
attn_cfgs (dict): The extra config of Shift Window-MSA.
Defaults to empty dict.
ffn_cfgs (dict): The extra config of FFN. Defaults to empty dict.
norm_cfg (dict): The config of norm layers.
Defaults to ``dict(type='LN')``.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
init_cfg (dict, optional): The extra config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
num_heads,
window_size=7,
ffn_ratio=4.,
qkv_bias=True,
drop_path=0.,
pad_small_map=False,
attn_cfgs=dict(),
ffn_cfgs=dict(),
norm_cfg=dict(type='LN'),
with_cp=False,
init_cfg=None):
super(DaViTBlock, self).__init__(init_cfg)
self.spatial_block = SpatialBlock(
embed_dims,
num_heads,
window_size=window_size,
ffn_ratio=ffn_ratio,
qkv_bias=qkv_bias,
drop_path=drop_path,
pad_small_map=pad_small_map,
attn_cfgs=attn_cfgs,
ffn_cfgs=ffn_cfgs,
norm_cfg=norm_cfg,
with_cp=with_cp)
self.channel_block = ChannelBlock(
embed_dims,
num_heads,
ffn_ratio=ffn_ratio,
qkv_bias=qkv_bias,
drop_path=drop_path,
ffn_cfgs=ffn_cfgs,
norm_cfg=norm_cfg,
with_cp=False)
def forward(self, x, hw_shape):
x = self.spatial_block(x, hw_shape)
x = self.channel_block(x, hw_shape)
return x
class DaViTBlockSequence(BaseModule):
"""Module with successive DaViT blocks and downsample layer.
Args:
embed_dims (int): Number of input channels.
depth (int): Number of successive DaViT blocks.
num_heads (int): Number of attention heads.
window_size (int): The height and width of the window. Defaults to 7.
ffn_ratio (float): The expansion ratio of feedforward network hidden
layer channels. Defaults to 4.
qkv_bias (bool): enable bias for qkv if True. Defaults to True.
downsample (bool): Downsample the output of blocks by patch merging.
Defaults to False.
downsample_cfg (dict): The extra config of the patch merging layer.
Defaults to empty dict.
drop_paths (Sequence[float] | float): The drop path rate in each block.
Defaults to 0.
block_cfgs (Sequence[dict] | dict): The extra config of each block.
Defaults to empty dicts.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
pad_small_map (bool): If True, pad the small feature map to the window
size, which is common used in detection and segmentation. If False,
avoid shifting window and shrink the window size to the size of
feature map, which is common used in classification.
Defaults to False.
init_cfg (dict, optional): The extra config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
depth,
num_heads,
window_size=7,
ffn_ratio=4.,
qkv_bias=True,
downsample=False,
downsample_cfg=dict(),
drop_paths=0.,
block_cfgs=dict(),
with_cp=False,
pad_small_map=False,
init_cfg=None):
super().__init__(init_cfg)
if not isinstance(drop_paths, Sequence):
drop_paths = [drop_paths] * depth
if not isinstance(block_cfgs, Sequence):
block_cfgs = [deepcopy(block_cfgs) for _ in range(depth)]
self.embed_dims = embed_dims
self.blocks = ModuleList()
for i in range(depth):
_block_cfg = {
'embed_dims': embed_dims,
'num_heads': num_heads,
'window_size': window_size,
'ffn_ratio': ffn_ratio,
'qkv_bias': qkv_bias,
'drop_path': drop_paths[i],
'with_cp': with_cp,
'pad_small_map': pad_small_map,
**block_cfgs[i]
}
block = DaViTBlock(**_block_cfg)
self.blocks.append(block)
if downsample:
_downsample_cfg = {
'in_channels': embed_dims,
'out_channels': 2 * embed_dims,
'norm_cfg': dict(type='LN'),
**downsample_cfg
}
self.downsample = DaViTDownSample(**_downsample_cfg)
else:
self.downsample = None
def forward(self, x, in_shape, do_downsample=True):
for block in self.blocks:
x = block(x, in_shape)
if self.downsample is not None and do_downsample:
x, out_shape = self.downsample(x, in_shape)
else:
out_shape = in_shape
return x, out_shape
@property
def out_channels(self):
if self.downsample:
return self.downsample.out_channels
else:
return self.embed_dims
@MODELS.register_module()
class DaViT(BaseBackbone):
"""DaViT.
A PyTorch implement of : `DaViT: Dual Attention Vision Transformers
<https://arxiv.org/abs/2204.03645v1>`_
Inspiration from
https://github.com/dingmyu/davit
Args:
arch (str | dict): DaViT architecture. If use string, choose from
'tiny', 'small', 'base' and 'large', 'huge', 'giant'. If use dict,
it should have below keys:
- **embed_dims** (int): The dimensions of embedding.
- **depths** (List[int]): The number of blocks in each stage.
- **num_heads** (List[int]): The number of heads in attention
modules of each stage.
Defaults to 't'.
patch_size (int | tuple): The patch size in patch embedding.
Defaults to 4.
in_channels (int): The num of input channels. Defaults to 3.
window_size (int): The height and width of the window. Defaults to 7.
ffn_ratio (float): The expansion ratio of feedforward network hidden
layer channels. Defaults to 4.
qkv_bias (bool): Whether to add bias for qkv in attention modules.
Defaults to True.
drop_path_rate (float): Stochastic depth rate. Defaults to 0.1.
out_after_downsample (bool): Whether to output the feature map of a
stage after the following downsample layer. Defaults to False.
pad_small_map (bool): If True, pad the small feature map to the window
size, which is common used in detection and segmentation. If False,
avoid shifting window and shrink the window size to the size of
feature map, which is common used in classification.
Defaults to False.
norm_cfg (dict): Config dict for normalization layer for all output
features. Defaults to ``dict(type='LN')``
stage_cfgs (Sequence[dict] | dict): Extra config dict for each
stage. Defaults to an empty dict.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Defaults to -1.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Defaults to False.
out_indices (Sequence | int): Output from which stages.
Defaults to -1, means the last stage.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
"""
arch_zoo = {
**dict.fromkeys(['t', 'tiny'], {
'embed_dims': 96,
'depths': [1, 1, 3, 1],
'num_heads': [3, 6, 12, 24]
}),
**dict.fromkeys(['s', 'small'], {
'embed_dims': 96,
'depths': [1, 1, 9, 1],
'num_heads': [3, 6, 12, 24]
}),
**dict.fromkeys(['b', 'base'], {
'embed_dims': 128,
'depths': [1, 1, 9, 1],
'num_heads': [4, 8, 16, 32]
}),
**dict.fromkeys(
['l', 'large'], {
'embed_dims': 192,
'depths': [1, 1, 9, 1],
'num_heads': [6, 12, 24, 48]
}),
**dict.fromkeys(
['h', 'huge'], {
'embed_dims': 256,
'depths': [1, 1, 9, 1],
'num_heads': [8, 16, 32, 64]
}),
**dict.fromkeys(
['g', 'giant'], {
'embed_dims': 384,
'depths': [1, 1, 12, 3],
'num_heads': [12, 24, 48, 96]
}),
}
def __init__(self,
arch='t',
patch_size=4,
in_channels=3,
window_size=7,
ffn_ratio=4.,
qkv_bias=True,
drop_path_rate=0.1,
out_after_downsample=False,
pad_small_map=False,
norm_cfg=dict(type='LN'),
stage_cfgs=dict(),
frozen_stages=-1,
norm_eval=False,
out_indices=(3, ),
with_cp=False,
init_cfg=None):
super().__init__(init_cfg)
if isinstance(arch, str):
arch = arch.lower()
assert arch in set(self.arch_zoo), \
f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
self.arch_settings = self.arch_zoo[arch]
else:
essential_keys = {'embed_dims', 'depths', 'num_heads'}
assert isinstance(arch, dict) and essential_keys <= set(arch), \
f'Custom arch needs a dict with keys {essential_keys}'
self.arch_settings = arch
self.embed_dims = self.arch_settings['embed_dims']
self.depths = self.arch_settings['depths']
self.num_heads = self.arch_settings['num_heads']
self.num_layers = len(self.depths)
self.out_indices = out_indices
self.out_after_downsample = out_after_downsample
self.frozen_stages = frozen_stages
self.norm_eval = norm_eval
# stochastic depth decay rule
total_depth = sum(self.depths)
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, total_depth)
] # stochastic depth decay rule
_patch_cfg = dict(
in_channels=in_channels,
embed_dims=self.embed_dims,
conv_type='Conv2d',
kernel_size=7,
stride=patch_size,
padding='same',
norm_cfg=dict(type='LN'),
)
self.patch_embed = PatchEmbed(**_patch_cfg)
self.stages = ModuleList()
embed_dims = [self.embed_dims]
for i, (depth,
num_heads) in enumerate(zip(self.depths, self.num_heads)):
if isinstance(stage_cfgs, Sequence):
stage_cfg = stage_cfgs[i]
else:
stage_cfg = deepcopy(stage_cfgs)
downsample = True if i < self.num_layers - 1 else False
_stage_cfg = {
'embed_dims': embed_dims[-1],
'depth': depth,
'num_heads': num_heads,
'window_size': window_size,
'ffn_ratio': ffn_ratio,
'qkv_bias': qkv_bias,
'downsample': downsample,
'drop_paths': dpr[:depth],
'with_cp': with_cp,
'pad_small_map': pad_small_map,
**stage_cfg
}
stage = DaViTBlockSequence(**_stage_cfg)
self.stages.append(stage)
dpr = dpr[depth:]
embed_dims.append(stage.out_channels)
self.num_features = embed_dims[:-1]
# add a norm layer for each output
for i in out_indices:
if norm_cfg is not None:
norm_layer = build_norm_layer(norm_cfg,
self.num_features[i])[1]
else:
norm_layer = nn.Identity()
self.add_module(f'norm{i}', norm_layer)
def train(self, mode=True):
super().train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
# trick: eval have effect on BatchNorm only
if isinstance(m, _BatchNorm):
m.eval()
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
for i in range(0, self.frozen_stages + 1):
m = self.stages[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
for i in self.out_indices:
if i <= self.frozen_stages:
for param in getattr(self, f'norm{i}').parameters():
param.requires_grad = False
def forward(self, x):
x, hw_shape = self.patch_embed(x)
outs = []
for i, stage in enumerate(self.stages):
x, hw_shape = stage(
x, hw_shape, do_downsample=self.out_after_downsample)
if i in self.out_indices:
norm_layer = getattr(self, f'norm{i}')
out = norm_layer(x)
out = out.view(-1, *hw_shape,
self.num_features[i]).permute(0, 3, 1,
2).contiguous()
outs.append(out)
if stage.downsample is not None and not self.out_after_downsample:
x, hw_shape = stage.downsample(x, hw_shape)
return tuple(outs)
|