File size: 30,635 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
# Copyright (c) OpenMMLab. All rights reserved.
from copy import deepcopy
from typing import Sequence, Tuple

import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import build_conv_layer, build_norm_layer
from mmcv.cnn.bricks import Conv2d
from mmcv.cnn.bricks.transformer import FFN, AdaptivePadding, PatchEmbed
from mmengine.model import BaseModule, ModuleList
from mmengine.utils import to_2tuple
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm

from mmcls.models.backbones.base_backbone import BaseBackbone
from mmcls.registry import MODELS
from ..utils import ShiftWindowMSA


class DaViTWindowMSA(BaseModule):
    """Window based multi-head self-attention (W-MSA) module for DaViT.

    The differences between DaViTWindowMSA & WindowMSA:
        1. Without relative position bias.

    Args:
        embed_dims (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
            Defaults to True.
        qk_scale (float, optional): Override default qk scale of
            ``head_dim ** -0.5`` if set. Defaults to None.
        attn_drop (float, optional): Dropout ratio of attention weight.
            Defaults to 0.
        proj_drop (float, optional): Dropout ratio of output. Defaults to 0.
        init_cfg (dict, optional): The extra config for initialization.
            Defaults to None.
    """

    def __init__(self,
                 embed_dims,
                 window_size,
                 num_heads,
                 qkv_bias=True,
                 qk_scale=None,
                 attn_drop=0.,
                 proj_drop=0.,
                 init_cfg=None):

        super().__init__(init_cfg)
        self.embed_dims = embed_dims
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_embed_dims = embed_dims // num_heads
        self.scale = qk_scale or head_embed_dims**-0.5

        self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(embed_dims, embed_dims)
        self.proj_drop = nn.Dropout(proj_drop)

        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask=None):
        """
        Args:

            x (tensor): input features with shape of (num_windows*B, N, C)
            mask (tensor, Optional): mask with shape of (num_windows, Wh*Ww,
                Wh*Ww), value should be between (-inf, 0].
        """
        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads,
                                  C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[
            2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N,
                             N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    @staticmethod
    def double_step_seq(step1, len1, step2, len2):
        seq1 = torch.arange(0, step1 * len1, step1)
        seq2 = torch.arange(0, step2 * len2, step2)
        return (seq1[:, None] + seq2[None, :]).reshape(1, -1)


class ConvPosEnc(BaseModule):
    """DaViT conv pos encode block.

    Args:
        embed_dims (int): Number of input channels.
        kernel_size (int): The kernel size of the first convolution.
            Defaults to 3.
        init_cfg (dict, optional): The extra config for initialization.
            Defaults to None.
    """

    def __init__(self, embed_dims, kernel_size=3, init_cfg=None):
        super(ConvPosEnc, self).__init__(init_cfg)
        self.proj = Conv2d(
            embed_dims,
            embed_dims,
            kernel_size,
            stride=1,
            padding=kernel_size // 2,
            groups=embed_dims)

    def forward(self, x, size: Tuple[int, int]):
        B, N, C = x.shape
        H, W = size
        assert N == H * W

        feat = x.transpose(1, 2).view(B, C, H, W)
        feat = self.proj(feat)
        feat = feat.flatten(2).transpose(1, 2)
        x = x + feat
        return x


class DaViTDownSample(BaseModule):
    """DaViT down sampole block.

    Args:
        in_channels (int): The number of input channels.
        out_channels (int): The number of output channels.
        conv_type (str): The type of convolution
            to generate patch embedding. Default: "Conv2d".
        kernel_size (int): The kernel size of the first convolution.
            Defaults to 2.
        stride (int): The stride of the second convluation module.
            Defaults to 2.
        padding (int | tuple | string ): The padding length of
            embedding conv. When it is a string, it means the mode
            of adaptive padding, support "same" and "corner" now.
            Defaults to "corner".
        dilation (int): Dilation of the convolution layers. Defaults to 1.
        bias (bool): Bias of embed conv. Default: True.
        norm_cfg (dict, optional): Config dict for normalization layer.
            Defaults to ``dict(type='LN')``.
        init_cfg (dict, optional): The extra config for initialization.
            Defaults to None.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 conv_type='Conv2d',
                 kernel_size=2,
                 stride=2,
                 padding='same',
                 dilation=1,
                 bias=True,
                 norm_cfg=None,
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)
        self.out_channels = out_channels
        if stride is None:
            stride = kernel_size

        kernel_size = to_2tuple(kernel_size)
        stride = to_2tuple(stride)
        dilation = to_2tuple(dilation)

        if isinstance(padding, str):
            self.adaptive_padding = AdaptivePadding(
                kernel_size=kernel_size,
                stride=stride,
                dilation=dilation,
                padding=padding)
            # disable the padding of conv
            padding = 0
        else:
            self.adaptive_padding = None
        padding = to_2tuple(padding)

        self.projection = build_conv_layer(
            dict(type=conv_type),
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            bias=bias)

        if norm_cfg is not None:
            self.norm = build_norm_layer(norm_cfg, in_channels)[1]
        else:
            self.norm = None

    def forward(self, x, input_size):
        if self.adaptive_padding:
            x = self.adaptive_padding(x)
        H, W = input_size
        B, L, C = x.shape
        assert L == H * W, 'input feature has wrong size'

        x = self.norm(x)
        x = x.reshape(B, H, W, C).permute(0, 3, 1, 2).contiguous()

        x = self.projection(x)
        output_size = (x.size(2), x.size(3))
        x = x.flatten(2).transpose(1, 2)
        return x, output_size


class ChannelAttention(BaseModule):
    """DaViT channel attention.

    Args:
        embed_dims (int): Number of input channels.
        num_heads (int): Number of attention heads.
        qkv_bias (bool): enable bias for qkv if True. Defaults to True.
        init_cfg (dict, optional): The extra config for initialization.
            Defaults to None.
    """

    def __init__(self, embed_dims, num_heads=8, qkv_bias=False, init_cfg=None):
        super().__init__(init_cfg)
        self.embed_dims = embed_dims
        self.num_heads = num_heads
        self.head_dims = embed_dims // num_heads
        self.scale = self.head_dims**-0.5

        self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias)
        self.proj = nn.Linear(embed_dims, embed_dims)

    def forward(self, x):
        B, N, _ = x.shape

        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
                                  self.head_dims).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        k = k * self.scale
        attention = k.transpose(-1, -2) @ v
        attention = attention.softmax(dim=-1)

        x = (attention @ q.transpose(-1, -2)).transpose(-1, -2)
        x = x.transpose(1, 2).reshape(B, N, self.embed_dims)
        x = self.proj(x)
        return x


class ChannelBlock(BaseModule):
    """DaViT channel attention block.

    Args:
        embed_dims (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (int): The height and width of the window. Defaults to 7.
        ffn_ratio (float): The expansion ratio of feedforward network hidden
            layer channels. Defaults to 4.
        qkv_bias (bool): enable bias for qkv if True. Defaults to True.
        drop_path (float): The drop path rate after attention and ffn.
            Defaults to 0.
        ffn_cfgs (dict): The extra config of FFN. Defaults to empty dict.
        norm_cfg (dict): The config of norm layers.
            Defaults to ``dict(type='LN')``.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Defaults to False.
        init_cfg (dict, optional): The extra config for initialization.
            Defaults to None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 ffn_ratio=4.,
                 qkv_bias=False,
                 drop_path=0.,
                 ffn_cfgs=dict(),
                 norm_cfg=dict(type='LN'),
                 with_cp=False,
                 init_cfg=None):
        super().__init__(init_cfg)
        self.with_cp = with_cp

        self.cpe1 = ConvPosEnc(embed_dims=embed_dims, kernel_size=3)
        self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1]
        self.attn = ChannelAttention(
            embed_dims, num_heads=num_heads, qkv_bias=qkv_bias)
        self.cpe2 = ConvPosEnc(embed_dims=embed_dims, kernel_size=3)

        _ffn_cfgs = {
            'embed_dims': embed_dims,
            'feedforward_channels': int(embed_dims * ffn_ratio),
            'num_fcs': 2,
            'ffn_drop': 0,
            'dropout_layer': dict(type='DropPath', drop_prob=drop_path),
            'act_cfg': dict(type='GELU'),
            **ffn_cfgs
        }
        self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1]
        self.ffn = FFN(**_ffn_cfgs)

    def forward(self, x, hw_shape):

        def _inner_forward(x):
            x = self.cpe1(x, hw_shape)
            identity = x
            x = self.norm1(x)
            x = self.attn(x)
            x = x + identity

            x = self.cpe2(x, hw_shape)
            identity = x
            x = self.norm2(x)
            x = self.ffn(x, identity=identity)

            return x

        if self.with_cp and x.requires_grad:
            x = cp.checkpoint(_inner_forward, x)
        else:
            x = _inner_forward(x)

        return x


class SpatialBlock(BaseModule):
    """DaViT spatial attention block.

    Args:
        embed_dims (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (int): The height and width of the window. Defaults to 7.
        ffn_ratio (float): The expansion ratio of feedforward network hidden
            layer channels. Defaults to 4.
        qkv_bias (bool): enable bias for qkv if True. Defaults to True.
        drop_path (float): The drop path rate after attention and ffn.
            Defaults to 0.
        pad_small_map (bool): If True, pad the small feature map to the window
            size, which is common used in detection and segmentation. If False,
            avoid shifting window and shrink the window size to the size of
            feature map, which is common used in classification.
            Defaults to False.
        attn_cfgs (dict): The extra config of Shift Window-MSA.
            Defaults to empty dict.
        ffn_cfgs (dict): The extra config of FFN. Defaults to empty dict.
        norm_cfg (dict): The config of norm layers.
            Defaults to ``dict(type='LN')``.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Defaults to False.
        init_cfg (dict, optional): The extra config for initialization.
            Defaults to None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 window_size=7,
                 ffn_ratio=4.,
                 qkv_bias=True,
                 drop_path=0.,
                 pad_small_map=False,
                 attn_cfgs=dict(),
                 ffn_cfgs=dict(),
                 norm_cfg=dict(type='LN'),
                 with_cp=False,
                 init_cfg=None):

        super(SpatialBlock, self).__init__(init_cfg)
        self.with_cp = with_cp

        self.cpe1 = ConvPosEnc(embed_dims=embed_dims, kernel_size=3)
        self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1]
        _attn_cfgs = {
            'embed_dims': embed_dims,
            'num_heads': num_heads,
            'shift_size': 0,
            'window_size': window_size,
            'dropout_layer': dict(type='DropPath', drop_prob=drop_path),
            'qkv_bias': qkv_bias,
            'pad_small_map': pad_small_map,
            'window_msa': DaViTWindowMSA,
            **attn_cfgs
        }
        self.attn = ShiftWindowMSA(**_attn_cfgs)
        self.cpe2 = ConvPosEnc(embed_dims=embed_dims, kernel_size=3)

        _ffn_cfgs = {
            'embed_dims': embed_dims,
            'feedforward_channels': int(embed_dims * ffn_ratio),
            'num_fcs': 2,
            'ffn_drop': 0,
            'dropout_layer': dict(type='DropPath', drop_prob=drop_path),
            'act_cfg': dict(type='GELU'),
            **ffn_cfgs
        }
        self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1]
        self.ffn = FFN(**_ffn_cfgs)

    def forward(self, x, hw_shape):

        def _inner_forward(x):
            x = self.cpe1(x, hw_shape)
            identity = x
            x = self.norm1(x)
            x = self.attn(x, hw_shape)
            x = x + identity

            x = self.cpe2(x, hw_shape)
            identity = x
            x = self.norm2(x)
            x = self.ffn(x, identity=identity)

            return x

        if self.with_cp and x.requires_grad:
            x = cp.checkpoint(_inner_forward, x)
        else:
            x = _inner_forward(x)

        return x


class DaViTBlock(BaseModule):
    """DaViT block.

    Args:
        embed_dims (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (int): The height and width of the window. Defaults to 7.
        ffn_ratio (float): The expansion ratio of feedforward network hidden
            layer channels. Defaults to 4.
        qkv_bias (bool): enable bias for qkv if True. Defaults to True.
        drop_path (float): The drop path rate after attention and ffn.
            Defaults to 0.
        pad_small_map (bool): If True, pad the small feature map to the window
            size, which is common used in detection and segmentation. If False,
            avoid shifting window and shrink the window size to the size of
            feature map, which is common used in classification.
            Defaults to False.
        attn_cfgs (dict): The extra config of Shift Window-MSA.
            Defaults to empty dict.
        ffn_cfgs (dict): The extra config of FFN. Defaults to empty dict.
        norm_cfg (dict): The config of norm layers.
            Defaults to ``dict(type='LN')``.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Defaults to False.
        init_cfg (dict, optional): The extra config for initialization.
            Defaults to None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 window_size=7,
                 ffn_ratio=4.,
                 qkv_bias=True,
                 drop_path=0.,
                 pad_small_map=False,
                 attn_cfgs=dict(),
                 ffn_cfgs=dict(),
                 norm_cfg=dict(type='LN'),
                 with_cp=False,
                 init_cfg=None):

        super(DaViTBlock, self).__init__(init_cfg)
        self.spatial_block = SpatialBlock(
            embed_dims,
            num_heads,
            window_size=window_size,
            ffn_ratio=ffn_ratio,
            qkv_bias=qkv_bias,
            drop_path=drop_path,
            pad_small_map=pad_small_map,
            attn_cfgs=attn_cfgs,
            ffn_cfgs=ffn_cfgs,
            norm_cfg=norm_cfg,
            with_cp=with_cp)
        self.channel_block = ChannelBlock(
            embed_dims,
            num_heads,
            ffn_ratio=ffn_ratio,
            qkv_bias=qkv_bias,
            drop_path=drop_path,
            ffn_cfgs=ffn_cfgs,
            norm_cfg=norm_cfg,
            with_cp=False)

    def forward(self, x, hw_shape):
        x = self.spatial_block(x, hw_shape)
        x = self.channel_block(x, hw_shape)

        return x


class DaViTBlockSequence(BaseModule):
    """Module with successive DaViT blocks and downsample layer.

    Args:
        embed_dims (int): Number of input channels.
        depth (int): Number of successive DaViT blocks.
        num_heads (int): Number of attention heads.
        window_size (int): The height and width of the window. Defaults to 7.
        ffn_ratio (float): The expansion ratio of feedforward network hidden
            layer channels. Defaults to 4.
        qkv_bias (bool): enable bias for qkv if True. Defaults to True.
        downsample (bool): Downsample the output of blocks by patch merging.
            Defaults to False.
        downsample_cfg (dict): The extra config of the patch merging layer.
            Defaults to empty dict.
        drop_paths (Sequence[float] | float): The drop path rate in each block.
            Defaults to 0.
        block_cfgs (Sequence[dict] | dict): The extra config of each block.
            Defaults to empty dicts.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Defaults to False.
        pad_small_map (bool): If True, pad the small feature map to the window
            size, which is common used in detection and segmentation. If False,
            avoid shifting window and shrink the window size to the size of
            feature map, which is common used in classification.
            Defaults to False.
        init_cfg (dict, optional): The extra config for initialization.
            Defaults to None.
    """

    def __init__(self,
                 embed_dims,
                 depth,
                 num_heads,
                 window_size=7,
                 ffn_ratio=4.,
                 qkv_bias=True,
                 downsample=False,
                 downsample_cfg=dict(),
                 drop_paths=0.,
                 block_cfgs=dict(),
                 with_cp=False,
                 pad_small_map=False,
                 init_cfg=None):
        super().__init__(init_cfg)

        if not isinstance(drop_paths, Sequence):
            drop_paths = [drop_paths] * depth

        if not isinstance(block_cfgs, Sequence):
            block_cfgs = [deepcopy(block_cfgs) for _ in range(depth)]

        self.embed_dims = embed_dims
        self.blocks = ModuleList()
        for i in range(depth):
            _block_cfg = {
                'embed_dims': embed_dims,
                'num_heads': num_heads,
                'window_size': window_size,
                'ffn_ratio': ffn_ratio,
                'qkv_bias': qkv_bias,
                'drop_path': drop_paths[i],
                'with_cp': with_cp,
                'pad_small_map': pad_small_map,
                **block_cfgs[i]
            }
            block = DaViTBlock(**_block_cfg)
            self.blocks.append(block)

        if downsample:
            _downsample_cfg = {
                'in_channels': embed_dims,
                'out_channels': 2 * embed_dims,
                'norm_cfg': dict(type='LN'),
                **downsample_cfg
            }
            self.downsample = DaViTDownSample(**_downsample_cfg)
        else:
            self.downsample = None

    def forward(self, x, in_shape, do_downsample=True):
        for block in self.blocks:
            x = block(x, in_shape)

        if self.downsample is not None and do_downsample:
            x, out_shape = self.downsample(x, in_shape)
        else:
            out_shape = in_shape
        return x, out_shape

    @property
    def out_channels(self):
        if self.downsample:
            return self.downsample.out_channels
        else:
            return self.embed_dims


@MODELS.register_module()
class DaViT(BaseBackbone):
    """DaViT.

    A PyTorch implement of : `DaViT: Dual Attention Vision Transformers
    <https://arxiv.org/abs/2204.03645v1>`_

    Inspiration from
    https://github.com/dingmyu/davit

    Args:
        arch (str | dict): DaViT architecture. If use string, choose from
            'tiny', 'small', 'base' and 'large', 'huge', 'giant'. If use dict,
            it should have below keys:

            - **embed_dims** (int): The dimensions of embedding.
            - **depths** (List[int]): The number of blocks in each stage.
            - **num_heads** (List[int]): The number of heads in attention
              modules of each stage.

            Defaults to 't'.
        patch_size (int | tuple): The patch size in patch embedding.
            Defaults to 4.
        in_channels (int): The num of input channels. Defaults to 3.
        window_size (int): The height and width of the window. Defaults to 7.
        ffn_ratio (float): The expansion ratio of feedforward network hidden
            layer channels. Defaults to 4.
        qkv_bias (bool): Whether to add bias for qkv in attention modules.
            Defaults to True.
        drop_path_rate (float): Stochastic depth rate. Defaults to 0.1.
        out_after_downsample (bool): Whether to output the feature map of a
            stage after the following downsample layer. Defaults to False.
        pad_small_map (bool): If True, pad the small feature map to the window
            size, which is common used in detection and segmentation. If False,
            avoid shifting window and shrink the window size to the size of
            feature map, which is common used in classification.
            Defaults to False.
        norm_cfg (dict): Config dict for normalization layer for all output
            features. Defaults to ``dict(type='LN')``
        stage_cfgs (Sequence[dict] | dict): Extra config dict for each
            stage. Defaults to an empty dict.
        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
            -1 means not freezing any parameters. Defaults to -1.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Defaults to False.
        out_indices (Sequence | int): Output from which stages.
            Defaults to -1, means the last stage.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Defaults to False.
        init_cfg (dict, optional): The Config for initialization.
            Defaults to None.
    """
    arch_zoo = {
        **dict.fromkeys(['t', 'tiny'], {
                            'embed_dims': 96,
                            'depths': [1, 1, 3, 1],
                            'num_heads': [3, 6, 12, 24]
                        }),
        **dict.fromkeys(['s', 'small'], {
                            'embed_dims': 96,
                            'depths': [1, 1, 9, 1],
                            'num_heads': [3, 6, 12, 24]
                        }),
        **dict.fromkeys(['b', 'base'], {
                            'embed_dims': 128,
                            'depths': [1, 1, 9, 1],
                            'num_heads': [4, 8, 16, 32]
                        }),
        **dict.fromkeys(
            ['l', 'large'], {
                'embed_dims': 192,
                'depths': [1, 1, 9, 1],
                'num_heads': [6, 12, 24, 48]
            }),
        **dict.fromkeys(
            ['h', 'huge'], {
                'embed_dims': 256,
                'depths': [1, 1, 9, 1],
                'num_heads': [8, 16, 32, 64]
            }),
        **dict.fromkeys(
            ['g', 'giant'], {
                'embed_dims': 384,
                'depths': [1, 1, 12, 3],
                'num_heads': [12, 24, 48, 96]
            }),
    }

    def __init__(self,
                 arch='t',
                 patch_size=4,
                 in_channels=3,
                 window_size=7,
                 ffn_ratio=4.,
                 qkv_bias=True,
                 drop_path_rate=0.1,
                 out_after_downsample=False,
                 pad_small_map=False,
                 norm_cfg=dict(type='LN'),
                 stage_cfgs=dict(),
                 frozen_stages=-1,
                 norm_eval=False,
                 out_indices=(3, ),
                 with_cp=False,
                 init_cfg=None):
        super().__init__(init_cfg)

        if isinstance(arch, str):
            arch = arch.lower()
            assert arch in set(self.arch_zoo), \
                f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
            self.arch_settings = self.arch_zoo[arch]
        else:
            essential_keys = {'embed_dims', 'depths', 'num_heads'}
            assert isinstance(arch, dict) and essential_keys <= set(arch), \
                f'Custom arch needs a dict with keys {essential_keys}'
            self.arch_settings = arch

        self.embed_dims = self.arch_settings['embed_dims']
        self.depths = self.arch_settings['depths']
        self.num_heads = self.arch_settings['num_heads']
        self.num_layers = len(self.depths)
        self.out_indices = out_indices
        self.out_after_downsample = out_after_downsample
        self.frozen_stages = frozen_stages
        self.norm_eval = norm_eval

        # stochastic depth decay rule
        total_depth = sum(self.depths)
        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, total_depth)
        ]  # stochastic depth decay rule

        _patch_cfg = dict(
            in_channels=in_channels,
            embed_dims=self.embed_dims,
            conv_type='Conv2d',
            kernel_size=7,
            stride=patch_size,
            padding='same',
            norm_cfg=dict(type='LN'),
        )
        self.patch_embed = PatchEmbed(**_patch_cfg)

        self.stages = ModuleList()
        embed_dims = [self.embed_dims]
        for i, (depth,
                num_heads) in enumerate(zip(self.depths, self.num_heads)):
            if isinstance(stage_cfgs, Sequence):
                stage_cfg = stage_cfgs[i]
            else:
                stage_cfg = deepcopy(stage_cfgs)
            downsample = True if i < self.num_layers - 1 else False
            _stage_cfg = {
                'embed_dims': embed_dims[-1],
                'depth': depth,
                'num_heads': num_heads,
                'window_size': window_size,
                'ffn_ratio': ffn_ratio,
                'qkv_bias': qkv_bias,
                'downsample': downsample,
                'drop_paths': dpr[:depth],
                'with_cp': with_cp,
                'pad_small_map': pad_small_map,
                **stage_cfg
            }

            stage = DaViTBlockSequence(**_stage_cfg)
            self.stages.append(stage)

            dpr = dpr[depth:]
            embed_dims.append(stage.out_channels)

        self.num_features = embed_dims[:-1]

        # add a norm layer for each output
        for i in out_indices:
            if norm_cfg is not None:
                norm_layer = build_norm_layer(norm_cfg,
                                              self.num_features[i])[1]
            else:
                norm_layer = nn.Identity()

            self.add_module(f'norm{i}', norm_layer)

    def train(self, mode=True):
        super().train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            for m in self.modules():
                # trick: eval have effect on BatchNorm only
                if isinstance(m, _BatchNorm):
                    m.eval()

    def _freeze_stages(self):
        if self.frozen_stages >= 0:
            self.patch_embed.eval()
            for param in self.patch_embed.parameters():
                param.requires_grad = False

        for i in range(0, self.frozen_stages + 1):
            m = self.stages[i]
            m.eval()
            for param in m.parameters():
                param.requires_grad = False
        for i in self.out_indices:
            if i <= self.frozen_stages:
                for param in getattr(self, f'norm{i}').parameters():
                    param.requires_grad = False

    def forward(self, x):
        x, hw_shape = self.patch_embed(x)

        outs = []
        for i, stage in enumerate(self.stages):
            x, hw_shape = stage(
                x, hw_shape, do_downsample=self.out_after_downsample)
            if i in self.out_indices:
                norm_layer = getattr(self, f'norm{i}')
                out = norm_layer(x)
                out = out.view(-1, *hw_shape,
                               self.num_features[i]).permute(0, 3, 1,
                                                             2).contiguous()
                outs.append(out)
            if stage.downsample is not None and not self.out_after_downsample:
                x, hw_shape = stage.downsample(x, hw_shape)

        return tuple(outs)