Spaces:
Runtime error
Runtime error
File size: 25,477 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Sequence
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
from mmcv.cnn.bricks import DropPath
from mmengine.model import BaseModule, Sequential
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.registry import MODELS
from ..utils import to_ntuple
from .resnet import Bottleneck as ResNetBottleneck
from .resnext import Bottleneck as ResNeXtBottleneck
eps = 1.0e-5
class DarknetBottleneck(BaseModule):
"""The basic bottleneck block used in Darknet. Each DarknetBottleneck
consists of two ConvModules and the input is added to the final output.
Each ConvModule is composed of Conv, BN, and LeakyReLU. The first convLayer
has filter size of 1x1 and the second one has the filter size of 3x3.
Args:
in_channels (int): The input channels of this Module.
out_channels (int): The output channels of this Module.
expansion (int): The ratio of ``out_channels/mid_channels`` where
``mid_channels`` is the input/output channels of conv2.
Defaults to 4.
add_identity (bool): Whether to add identity to the out.
Defaults to True.
use_depthwise (bool): Whether to use depthwise separable convolution.
Defaults to False.
conv_cfg (dict): Config dict for convolution layer. Defaults to None,
which means using conv2d.
drop_path_rate (float): The ratio of the drop path layer. Default: 0.
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='BN', eps=1e-5)``.
act_cfg (dict): Config dict for activation layer.
Defaults to ``dict(type='Swish')``.
"""
def __init__(self,
in_channels,
out_channels,
expansion=2,
add_identity=True,
use_depthwise=False,
conv_cfg=None,
drop_path_rate=0,
norm_cfg=dict(type='BN', eps=1e-5),
act_cfg=dict(type='LeakyReLU', inplace=True),
init_cfg=None):
super().__init__(init_cfg)
hidden_channels = int(out_channels / expansion)
conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule
self.conv1 = ConvModule(
in_channels,
hidden_channels,
1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.conv2 = conv(
hidden_channels,
out_channels,
3,
stride=1,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.add_identity = \
add_identity and in_channels == out_channels
self.drop_path = DropPath(drop_prob=drop_path_rate
) if drop_path_rate > eps else nn.Identity()
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.conv2(out)
out = self.drop_path(out)
if self.add_identity:
return out + identity
else:
return out
class CSPStage(BaseModule):
"""Cross Stage Partial Stage.
.. code:: text
Downsample Convolution (optional)
|
|
Expand Convolution
|
|
Split to xa, xb
| \
| \
| blocks(xb)
| /
| / transition
| /
Concat xa, blocks(xb)
|
Transition Convolution
Args:
block_fn (nn.module): The basic block function in the Stage.
in_channels (int): The input channels of the CSP layer.
out_channels (int): The output channels of the CSP layer.
has_downsampler (bool): Whether to add a downsampler in the stage.
Default: False.
down_growth (bool): Whether to expand the channels in the
downsampler layer of the stage. Default: False.
expand_ratio (float): The expand ratio to adjust the number of
channels of the expand conv layer. Default: 0.5
bottle_ratio (float): Ratio to adjust the number of channels of the
hidden layer. Default: 0.5
block_dpr (float): The ratio of the drop path layer in the
blocks of the stage. Default: 0.
num_blocks (int): Number of blocks. Default: 1
conv_cfg (dict, optional): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN')
act_cfg (dict): Config dict for activation layer.
Default: dict(type='LeakyReLU', inplace=True)
"""
def __init__(self,
block_fn,
in_channels,
out_channels,
has_downsampler=True,
down_growth=False,
expand_ratio=0.5,
bottle_ratio=2,
num_blocks=1,
block_dpr=0,
block_args={},
conv_cfg=None,
norm_cfg=dict(type='BN', eps=1e-5),
act_cfg=dict(type='LeakyReLU', inplace=True),
init_cfg=None):
super().__init__(init_cfg)
# grow downsample channels to output channels
down_channels = out_channels if down_growth else in_channels
block_dpr = to_ntuple(num_blocks)(block_dpr)
if has_downsampler:
self.downsample_conv = ConvModule(
in_channels=in_channels,
out_channels=down_channels,
kernel_size=3,
stride=2,
padding=1,
groups=32 if block_fn is ResNeXtBottleneck else 1,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
else:
self.downsample_conv = nn.Identity()
exp_channels = int(down_channels * expand_ratio)
self.expand_conv = ConvModule(
in_channels=down_channels,
out_channels=exp_channels,
kernel_size=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg if block_fn is DarknetBottleneck else None)
assert exp_channels % 2 == 0, \
'The channel number before blocks must be divisible by 2.'
block_channels = exp_channels // 2
blocks = []
for i in range(num_blocks):
block_cfg = dict(
in_channels=block_channels,
out_channels=block_channels,
expansion=bottle_ratio,
drop_path_rate=block_dpr[i],
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
**block_args)
blocks.append(block_fn(**block_cfg))
self.blocks = Sequential(*blocks)
self.atfer_blocks_conv = ConvModule(
block_channels,
block_channels,
1,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.final_conv = ConvModule(
2 * block_channels,
out_channels,
1,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
def forward(self, x):
x = self.downsample_conv(x)
x = self.expand_conv(x)
split = x.shape[1] // 2
xa, xb = x[:, :split], x[:, split:]
xb = self.blocks(xb)
xb = self.atfer_blocks_conv(xb).contiguous()
x_final = torch.cat((xa, xb), dim=1)
return self.final_conv(x_final)
class CSPNet(BaseModule):
"""The abstract CSP Network class.
A Pytorch implementation of `CSPNet: A New Backbone that can Enhance
Learning Capability of CNN <https://arxiv.org/abs/1911.11929>`_
This class is an abstract class because the Cross Stage Partial Network
(CSPNet) is a kind of universal network structure, and you
network block to implement networks like CSPResNet, CSPResNeXt and
CSPDarkNet.
Args:
arch (dict): The architecture of the CSPNet.
It should have the following keys:
- block_fn (Callable): A function or class to return a block
module, and it should accept at least ``in_channels``,
``out_channels``, ``expansion``, ``drop_path_rate``, ``norm_cfg``
and ``act_cfg``.
- in_channels (Tuple[int]): The number of input channels of each
stage.
- out_channels (Tuple[int]): The number of output channels of each
stage.
- num_blocks (Tuple[int]): The number of blocks in each stage.
- expansion_ratio (float | Tuple[float]): The expansion ratio in
the expand convolution of each stage. Defaults to 0.5.
- bottle_ratio (float | Tuple[float]): The expansion ratio of
blocks in each stage. Defaults to 2.
- has_downsampler (bool | Tuple[bool]): Whether to add a
downsample convolution in each stage. Defaults to True
- down_growth (bool | Tuple[bool]): Whether to expand the channels
in the downsampler layer of each stage. Defaults to False.
- block_args (dict | Tuple[dict], optional): The extra arguments to
the blocks in each stage. Defaults to None.
stem_fn (Callable): A function or class to return a stem module.
And it should accept ``in_channels``.
in_channels (int): Number of input image channels. Defaults to 3.
out_indices (int | Sequence[int]): Output from which stages.
Defaults to -1, which means the last stage.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Defaults to -1.
conv_cfg (dict, optional): The config dict for conv layers in blocks.
Defaults to None, which means use Conv2d.
norm_cfg (dict): The config dict for norm layers.
Defaults to ``dict(type='BN', eps=1e-5)``.
act_cfg (dict): The config dict for activation functions.
Defaults to ``dict(type='LeakyReLU', inplace=True)``.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Defaults to False.
init_cfg (dict, optional): The initialization settings.
Defaults to ``dict(type='Kaiming', layer='Conv2d'))``.
Example:
>>> from functools import partial
>>> import torch
>>> import torch.nn as nn
>>> from mmcls.models import CSPNet
>>> from mmcls.models.backbones.resnet import Bottleneck
>>>
>>> # A simple example to build CSPNet.
>>> arch = dict(
... block_fn=Bottleneck,
... in_channels=[32, 64],
... out_channels=[64, 128],
... num_blocks=[3, 4]
... )
>>> stem_fn = partial(nn.Conv2d, out_channels=32, kernel_size=3)
>>> model = CSPNet(arch=arch, stem_fn=stem_fn, out_indices=(0, 1))
>>> inputs = torch.rand(1, 3, 224, 224)
>>> outs = model(inputs)
>>> for out in outs:
... print(out.shape)
...
(1, 64, 111, 111)
(1, 128, 56, 56)
"""
def __init__(self,
arch,
stem_fn,
in_channels=3,
out_indices=-1,
frozen_stages=-1,
drop_path_rate=0.,
conv_cfg=None,
norm_cfg=dict(type='BN', eps=1e-5),
act_cfg=dict(type='LeakyReLU', inplace=True),
norm_eval=False,
init_cfg=dict(type='Kaiming', layer='Conv2d')):
super().__init__(init_cfg=init_cfg)
self.arch = self.expand_arch(arch)
self.num_stages = len(self.arch['in_channels'])
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.norm_eval = norm_eval
if frozen_stages not in range(-1, self.num_stages):
raise ValueError('frozen_stages must be in range(-1, '
f'{self.num_stages}). But received '
f'{frozen_stages}')
self.frozen_stages = frozen_stages
self.stem = stem_fn(in_channels)
stages = []
depths = self.arch['num_blocks']
dpr = torch.linspace(0, drop_path_rate, sum(depths)).split(depths)
for i in range(self.num_stages):
stage_cfg = {k: v[i] for k, v in self.arch.items()}
csp_stage = CSPStage(
**stage_cfg,
block_dpr=dpr[i].tolist(),
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
init_cfg=init_cfg)
stages.append(csp_stage)
self.stages = Sequential(*stages)
if isinstance(out_indices, int):
out_indices = [out_indices]
assert isinstance(out_indices, Sequence), \
f'"out_indices" must by a sequence or int, ' \
f'get {type(out_indices)} instead.'
out_indices = list(out_indices)
for i, index in enumerate(out_indices):
if index < 0:
out_indices[i] = len(self.stages) + index
assert 0 <= out_indices[i] <= len(self.stages), \
f'Invalid out_indices {index}.'
self.out_indices = out_indices
@staticmethod
def expand_arch(arch):
num_stages = len(arch['in_channels'])
def to_tuple(x, name=''):
if isinstance(x, (list, tuple)):
assert len(x) == num_stages, \
f'The length of {name} ({len(x)}) does not ' \
f'equals to the number of stages ({num_stages})'
return tuple(x)
else:
return (x, ) * num_stages
full_arch = {k: to_tuple(v, k) for k, v in arch.items()}
if 'block_args' not in full_arch:
full_arch['block_args'] = to_tuple({})
return full_arch
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.stem.eval()
for param in self.stem.parameters():
param.requires_grad = False
for i in range(self.frozen_stages + 1):
m = self.stages[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
def train(self, mode=True):
super(CSPNet, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval()
def forward(self, x):
outs = []
x = self.stem(x)
for i, stage in enumerate(self.stages):
x = stage(x)
if i in self.out_indices:
outs.append(x)
return tuple(outs)
@MODELS.register_module()
class CSPDarkNet(CSPNet):
"""CSP-Darknet backbone used in YOLOv4.
Args:
depth (int): Depth of CSP-Darknet. Default: 53.
in_channels (int): Number of input image channels. Default: 3.
out_indices (Sequence[int]): Output from which stages.
Default: (3, ).
frozen_stages (int): Stages to be frozen (stop grad and set eval
mode). -1 means not freezing any parameters. Default: -1.
conv_cfg (dict): Config dict for convolution layer. Default: None.
norm_cfg (dict): Dictionary to construct and config norm layer.
Default: dict(type='BN', requires_grad=True).
act_cfg (dict): Config dict for activation layer.
Default: dict(type='LeakyReLU', negative_slope=0.1).
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
Example:
>>> from mmcls.models import CSPDarkNet
>>> import torch
>>> model = CSPDarkNet(depth=53, out_indices=(0, 1, 2, 3, 4))
>>> model.eval()
>>> inputs = torch.rand(1, 3, 416, 416)
>>> level_outputs = model(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
...
(1, 64, 208, 208)
(1, 128, 104, 104)
(1, 256, 52, 52)
(1, 512, 26, 26)
(1, 1024, 13, 13)
"""
arch_settings = {
53:
dict(
block_fn=DarknetBottleneck,
in_channels=(32, 64, 128, 256, 512),
out_channels=(64, 128, 256, 512, 1024),
num_blocks=(1, 2, 8, 8, 4),
expand_ratio=(2, 1, 1, 1, 1),
bottle_ratio=(2, 1, 1, 1, 1),
has_downsampler=True,
down_growth=True,
),
}
def __init__(self,
depth,
in_channels=3,
out_indices=(4, ),
frozen_stages=-1,
conv_cfg=None,
norm_cfg=dict(type='BN', eps=1e-5),
act_cfg=dict(type='LeakyReLU', inplace=True),
norm_eval=False,
init_cfg=dict(
type='Kaiming',
layer='Conv2d',
a=math.sqrt(5),
distribution='uniform',
mode='fan_in',
nonlinearity='leaky_relu')):
assert depth in self.arch_settings, 'depth must be one of ' \
f'{list(self.arch_settings.keys())}, but get {depth}.'
super().__init__(
arch=self.arch_settings[depth],
stem_fn=self._make_stem_layer,
in_channels=in_channels,
out_indices=out_indices,
frozen_stages=frozen_stages,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
norm_eval=norm_eval,
init_cfg=init_cfg)
def _make_stem_layer(self, in_channels):
"""using a stride=1 conv as the stem in CSPDarknet."""
# `stem_channels` equals to the `in_channels` in the first stage.
stem_channels = self.arch['in_channels'][0]
stem = ConvModule(
in_channels=in_channels,
out_channels=stem_channels,
kernel_size=3,
padding=1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
return stem
@MODELS.register_module()
class CSPResNet(CSPNet):
"""CSP-ResNet backbone.
Args:
depth (int): Depth of CSP-ResNet. Default: 50.
out_indices (Sequence[int]): Output from which stages.
Default: (4, ).
frozen_stages (int): Stages to be frozen (stop grad and set eval
mode). -1 means not freezing any parameters. Default: -1.
conv_cfg (dict): Config dict for convolution layer. Default: None.
norm_cfg (dict): Dictionary to construct and config norm layer.
Default: dict(type='BN', requires_grad=True).
act_cfg (dict): Config dict for activation layer.
Default: dict(type='LeakyReLU', negative_slope=0.1).
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
Example:
>>> from mmcls.models import CSPResNet
>>> import torch
>>> model = CSPResNet(depth=50, out_indices=(0, 1, 2, 3))
>>> model.eval()
>>> inputs = torch.rand(1, 3, 416, 416)
>>> level_outputs = model(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
...
(1, 128, 104, 104)
(1, 256, 52, 52)
(1, 512, 26, 26)
(1, 1024, 13, 13)
"""
arch_settings = {
50:
dict(
block_fn=ResNetBottleneck,
in_channels=(64, 128, 256, 512),
out_channels=(128, 256, 512, 1024),
num_blocks=(3, 3, 5, 2),
expand_ratio=4,
bottle_ratio=2,
has_downsampler=(False, True, True, True),
down_growth=False),
}
def __init__(self,
depth,
in_channels=3,
out_indices=(3, ),
frozen_stages=-1,
deep_stem=False,
conv_cfg=None,
norm_cfg=dict(type='BN', eps=1e-5),
act_cfg=dict(type='LeakyReLU', inplace=True),
norm_eval=False,
init_cfg=dict(type='Kaiming', layer='Conv2d')):
assert depth in self.arch_settings, 'depth must be one of ' \
f'{list(self.arch_settings.keys())}, but get {depth}.'
self.deep_stem = deep_stem
super().__init__(
arch=self.arch_settings[depth],
stem_fn=self._make_stem_layer,
in_channels=in_channels,
out_indices=out_indices,
frozen_stages=frozen_stages,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
norm_eval=norm_eval,
init_cfg=init_cfg)
def _make_stem_layer(self, in_channels):
# `stem_channels` equals to the `in_channels` in the first stage.
stem_channels = self.arch['in_channels'][0]
if self.deep_stem:
stem = nn.Sequential(
ConvModule(
in_channels,
stem_channels // 2,
kernel_size=3,
stride=2,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg),
ConvModule(
stem_channels // 2,
stem_channels // 2,
kernel_size=3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg),
ConvModule(
stem_channels // 2,
stem_channels,
kernel_size=3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
else:
stem = nn.Sequential(
ConvModule(
in_channels,
stem_channels,
kernel_size=7,
stride=2,
padding=3,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
return stem
@MODELS.register_module()
class CSPResNeXt(CSPResNet):
"""CSP-ResNeXt backbone.
Args:
depth (int): Depth of CSP-ResNeXt. Default: 50.
out_indices (Sequence[int]): Output from which stages.
Default: (4, ).
frozen_stages (int): Stages to be frozen (stop grad and set eval
mode). -1 means not freezing any parameters. Default: -1.
conv_cfg (dict): Config dict for convolution layer. Default: None.
norm_cfg (dict): Dictionary to construct and config norm layer.
Default: dict(type='BN', requires_grad=True).
act_cfg (dict): Config dict for activation layer.
Default: dict(type='LeakyReLU', negative_slope=0.1).
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
Example:
>>> from mmcls.models import CSPResNeXt
>>> import torch
>>> model = CSPResNeXt(depth=50, out_indices=(0, 1, 2, 3))
>>> model.eval()
>>> inputs = torch.rand(1, 3, 224, 224)
>>> level_outputs = model(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
...
(1, 256, 56, 56)
(1, 512, 28, 28)
(1, 1024, 14, 14)
(1, 2048, 7, 7)
"""
arch_settings = {
50:
dict(
block_fn=ResNeXtBottleneck,
in_channels=(64, 256, 512, 1024),
out_channels=(256, 512, 1024, 2048),
num_blocks=(3, 3, 5, 2),
expand_ratio=(4, 2, 2, 2),
bottle_ratio=4,
has_downsampler=(False, True, True, True),
down_growth=False,
# the base_channels is changed from 64 to 32 in CSPNet
block_args=dict(base_channels=32),
),
}
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
|