File size: 13,279 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# Copyright (c) OpenMMLab. All rights reserved.
from functools import partial
from itertools import chain
from typing import Sequence

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from mmcv.cnn.bricks import DropPath, build_activation_layer, build_norm_layer
from mmengine.model import BaseModule, ModuleList, Sequential
from mmengine.registry import MODELS

from .base_backbone import BaseBackbone


@MODELS.register_module('LN2d')
class LayerNorm2d(nn.LayerNorm):
    """LayerNorm on channels for 2d images.

    Args:
        num_channels (int): The number of channels of the input tensor.
        eps (float): a value added to the denominator for numerical stability.
            Defaults to 1e-5.
        elementwise_affine (bool): a boolean value that when set to ``True``,
            this module has learnable per-element affine parameters initialized
            to ones (for weights) and zeros (for biases). Defaults to True.
    """

    def __init__(self, num_channels: int, **kwargs) -> None:
        super().__init__(num_channels, **kwargs)
        self.num_channels = self.normalized_shape[0]

    def forward(self, x, data_format='channel_first'):
        assert x.dim() == 4, 'LayerNorm2d only supports inputs with shape ' \
            f'(N, C, H, W), but got tensor with shape {x.shape}'
        if data_format == 'channel_last':
            x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias,
                             self.eps)
        elif data_format == 'channel_first':
            x = x.permute(0, 2, 3, 1)
            x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias,
                             self.eps)
            # If the output is discontiguous, it may cause some unexpected
            # problem in the downstream tasks
            x = x.permute(0, 3, 1, 2).contiguous()
        return x


class ConvNeXtBlock(BaseModule):
    """ConvNeXt Block.

    Args:
        in_channels (int): The number of input channels.
        dw_conv_cfg (dict): Config of depthwise convolution.
            Defaults to ``dict(kernel_size=7, padding=3)``.
        norm_cfg (dict): The config dict for norm layers.
            Defaults to ``dict(type='LN2d', eps=1e-6)``.
        act_cfg (dict): The config dict for activation between pointwise
            convolution. Defaults to ``dict(type='GELU')``.
        mlp_ratio (float): The expansion ratio in both pointwise convolution.
            Defaults to 4.
        linear_pw_conv (bool): Whether to use linear layer to do pointwise
            convolution. More details can be found in the note.
            Defaults to True.
        drop_path_rate (float): Stochastic depth rate. Defaults to 0.
        layer_scale_init_value (float): Init value for Layer Scale.
            Defaults to 1e-6.

    Note:
        There are two equivalent implementations:

        1. DwConv -> LayerNorm -> 1x1 Conv -> GELU -> 1x1 Conv;
           all outputs are in (N, C, H, W).
        2. DwConv -> LayerNorm -> Permute to (N, H, W, C) -> Linear -> GELU
           -> Linear; Permute back

        As default, we use the second to align with the official repository.
        And it may be slightly faster.
    """

    def __init__(self,
                 in_channels,
                 dw_conv_cfg=dict(kernel_size=7, padding=3),
                 norm_cfg=dict(type='LN2d', eps=1e-6),
                 act_cfg=dict(type='GELU'),
                 mlp_ratio=4.,
                 linear_pw_conv=True,
                 drop_path_rate=0.,
                 layer_scale_init_value=1e-6,
                 with_cp=False):
        super().__init__()
        self.with_cp = with_cp

        self.depthwise_conv = nn.Conv2d(
            in_channels, in_channels, groups=in_channels, **dw_conv_cfg)

        self.linear_pw_conv = linear_pw_conv
        self.norm = build_norm_layer(norm_cfg, in_channels)[1]

        mid_channels = int(mlp_ratio * in_channels)
        if self.linear_pw_conv:
            # Use linear layer to do pointwise conv.
            pw_conv = nn.Linear
        else:
            pw_conv = partial(nn.Conv2d, kernel_size=1)

        self.pointwise_conv1 = pw_conv(in_channels, mid_channels)
        self.act = build_activation_layer(act_cfg)
        self.pointwise_conv2 = pw_conv(mid_channels, in_channels)

        self.gamma = nn.Parameter(
            layer_scale_init_value * torch.ones((in_channels)),
            requires_grad=True) if layer_scale_init_value > 0 else None

        self.drop_path = DropPath(
            drop_path_rate) if drop_path_rate > 0. else nn.Identity()

    def forward(self, x):

        def _inner_forward(x):
            shortcut = x
            x = self.depthwise_conv(x)

            if self.linear_pw_conv:
                x = x.permute(0, 2, 3, 1)  # (N, C, H, W) -> (N, H, W, C)
            x = self.norm(x, data_format='channel_last')

            x = self.pointwise_conv1(x)
            x = self.act(x)
            x = self.pointwise_conv2(x)

            if self.linear_pw_conv:
                x = x.permute(0, 3, 1, 2)  # permute back

            if self.gamma is not None:
                x = x.mul(self.gamma.view(1, -1, 1, 1))

            x = shortcut + self.drop_path(x)
            return x

        if self.with_cp and x.requires_grad:
            x = cp.checkpoint(_inner_forward, x)
        else:
            x = _inner_forward(x)
        return x


@MODELS.register_module()
class ConvNeXt(BaseBackbone):
    """ConvNeXt.

    A PyTorch implementation of : `A ConvNet for the 2020s
    <https://arxiv.org/pdf/2201.03545.pdf>`_

    Modified from the `official repo
    <https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py>`_
    and `timm
    <https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/convnext.py>`_.

    Args:
        arch (str | dict): The model's architecture. If string, it should be
            one of architecture in ``ConvNeXt.arch_settings``. And if dict, it
            should include the following two keys:

            - depths (list[int]): Number of blocks at each stage.
            - channels (list[int]): The number of channels at each stage.

            Defaults to 'tiny'.
        in_channels (int): Number of input image channels. Defaults to 3.
        stem_patch_size (int): The size of one patch in the stem layer.
            Defaults to 4.
        norm_cfg (dict): The config dict for norm layers.
            Defaults to ``dict(type='LN2d', eps=1e-6)``.
        act_cfg (dict): The config dict for activation between pointwise
            convolution. Defaults to ``dict(type='GELU')``.
        linear_pw_conv (bool): Whether to use linear layer to do pointwise
            convolution. Defaults to True.
        drop_path_rate (float): Stochastic depth rate. Defaults to 0.
        layer_scale_init_value (float): Init value for Layer Scale.
            Defaults to 1e-6.
        out_indices (Sequence | int): Output from which stages.
            Defaults to -1, means the last stage.
        frozen_stages (int): Stages to be frozen (all param fixed).
            Defaults to 0, which means not freezing any parameters.
        gap_before_final_norm (bool): Whether to globally average the feature
            map before the final norm layer. In the official repo, it's only
            used in classification task. Defaults to True.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Defaults to False.
        init_cfg (dict, optional): Initialization config dict
    """  # noqa: E501
    arch_settings = {
        'tiny': {
            'depths': [3, 3, 9, 3],
            'channels': [96, 192, 384, 768]
        },
        'small': {
            'depths': [3, 3, 27, 3],
            'channels': [96, 192, 384, 768]
        },
        'base': {
            'depths': [3, 3, 27, 3],
            'channels': [128, 256, 512, 1024]
        },
        'large': {
            'depths': [3, 3, 27, 3],
            'channels': [192, 384, 768, 1536]
        },
        'xlarge': {
            'depths': [3, 3, 27, 3],
            'channels': [256, 512, 1024, 2048]
        },
    }

    def __init__(self,
                 arch='tiny',
                 in_channels=3,
                 stem_patch_size=4,
                 norm_cfg=dict(type='LN2d', eps=1e-6),
                 act_cfg=dict(type='GELU'),
                 linear_pw_conv=True,
                 drop_path_rate=0.,
                 layer_scale_init_value=1e-6,
                 out_indices=-1,
                 frozen_stages=0,
                 gap_before_final_norm=True,
                 with_cp=False,
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)

        if isinstance(arch, str):
            assert arch in self.arch_settings, \
                f'Unavailable arch, please choose from ' \
                f'({set(self.arch_settings)}) or pass a dict.'
            arch = self.arch_settings[arch]
        elif isinstance(arch, dict):
            assert 'depths' in arch and 'channels' in arch, \
                f'The arch dict must have "depths" and "channels", ' \
                f'but got {list(arch.keys())}.'

        self.depths = arch['depths']
        self.channels = arch['channels']
        assert (isinstance(self.depths, Sequence)
                and isinstance(self.channels, Sequence)
                and len(self.depths) == len(self.channels)), \
            f'The "depths" ({self.depths}) and "channels" ({self.channels}) ' \
            'should be both sequence with the same length.'

        self.num_stages = len(self.depths)

        if isinstance(out_indices, int):
            out_indices = [out_indices]
        assert isinstance(out_indices, Sequence), \
            f'"out_indices" must by a sequence or int, ' \
            f'get {type(out_indices)} instead.'
        for i, index in enumerate(out_indices):
            if index < 0:
                out_indices[i] = 4 + index
                assert out_indices[i] >= 0, f'Invalid out_indices {index}'
        self.out_indices = out_indices

        self.frozen_stages = frozen_stages
        self.gap_before_final_norm = gap_before_final_norm

        # stochastic depth decay rule
        dpr = [
            x.item()
            for x in torch.linspace(0, drop_path_rate, sum(self.depths))
        ]
        block_idx = 0

        # 4 downsample layers between stages, including the stem layer.
        self.downsample_layers = ModuleList()
        stem = nn.Sequential(
            nn.Conv2d(
                in_channels,
                self.channels[0],
                kernel_size=stem_patch_size,
                stride=stem_patch_size),
            build_norm_layer(norm_cfg, self.channels[0])[1],
        )
        self.downsample_layers.append(stem)

        # 4 feature resolution stages, each consisting of multiple residual
        # blocks
        self.stages = nn.ModuleList()

        for i in range(self.num_stages):
            depth = self.depths[i]
            channels = self.channels[i]

            if i >= 1:
                downsample_layer = nn.Sequential(
                    build_norm_layer(norm_cfg, self.channels[i - 1])[1],
                    nn.Conv2d(
                        self.channels[i - 1],
                        channels,
                        kernel_size=2,
                        stride=2),
                )
                self.downsample_layers.append(downsample_layer)

            stage = Sequential(*[
                ConvNeXtBlock(
                    in_channels=channels,
                    drop_path_rate=dpr[block_idx + j],
                    norm_cfg=norm_cfg,
                    act_cfg=act_cfg,
                    linear_pw_conv=linear_pw_conv,
                    layer_scale_init_value=layer_scale_init_value,
                    with_cp=with_cp) for j in range(depth)
            ])
            block_idx += depth

            self.stages.append(stage)

            if i in self.out_indices:
                norm_layer = build_norm_layer(norm_cfg, channels)[1]
                self.add_module(f'norm{i}', norm_layer)

        self._freeze_stages()

    def forward(self, x):
        outs = []
        for i, stage in enumerate(self.stages):
            x = self.downsample_layers[i](x)
            x = stage(x)
            if i in self.out_indices:
                norm_layer = getattr(self, f'norm{i}')
                if self.gap_before_final_norm:
                    gap = x.mean([-2, -1], keepdim=True)
                    outs.append(norm_layer(gap).flatten(1))
                else:
                    outs.append(norm_layer(x))

        return tuple(outs)

    def _freeze_stages(self):
        for i in range(self.frozen_stages):
            downsample_layer = self.downsample_layers[i]
            stage = self.stages[i]
            downsample_layer.eval()
            stage.eval()
            for param in chain(downsample_layer.parameters(),
                               stage.parameters()):
                param.requires_grad = False

    def train(self, mode=True):
        super(ConvNeXt, self).train(mode)
        self._freeze_stages()