Spaces:
Runtime error
Runtime error
File size: 11,452 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os.path as osp
from os import PathLike
from typing import Optional, Sequence
import mmengine
from mmcv.transforms import Compose
from mmengine.fileio import FileClient
from .builder import DATASETS
def expanduser(path):
if isinstance(path, (str, PathLike)):
return osp.expanduser(path)
else:
return path
def isabs(uri):
return osp.isabs(uri) or ('://' in uri)
@DATASETS.register_module()
class MultiTaskDataset:
"""Custom dataset for multi-task dataset.
To use the dataset, please generate and provide an annotation file in the
below format:
.. code-block:: json
{
"metainfo": {
"tasks":
[
'gender'
'wear'
]
},
"data_list": [
{
"img_path": "a.jpg",
gt_label:{
"gender": 0,
"wear": [1, 0, 1, 0]
}
},
{
"img_path": "b.jpg",
gt_label:{
"gender": 1,
"wear": [1, 0, 1, 0]
}
}
]
}
Assume we put our dataset in the ``data/mydataset`` folder in the
repository and organize it as the below format: ::
mmclassification/
βββ data
βββ mydataset
βββ annotation
βΒ Β βββ train.json
βΒ Β βββ test.json
βΒ Β βββ val.json
βββ train
βΒ Β βββ a.jpg
βΒ Β βββ ...
βββ test
βΒ Β βββ b.jpg
βΒ Β βββ ...
βββ val
βββ c.jpg
βββ ...
We can use the below config to build datasets:
.. code:: python
>>> from mmcls.datasets import build_dataset
>>> train_cfg = dict(
... type="MultiTaskDataset",
... ann_file="annotation/train.json",
... data_root="data/mydataset",
... # The `img_path` field in the train annotation file is relative
... # to the `train` folder.
... data_prefix='train',
... )
>>> train_dataset = build_dataset(train_cfg)
Or we can put all files in the same folder: ::
mmclassification/
βββ data
βββ mydataset
βββ train.json
βββ test.json
βββ val.json
βββ a.jpg
βββ b.jpg
βββ c.jpg
βββ ...
And we can use the below config to build datasets:
.. code:: python
>>> from mmcls.datasets import build_dataset
>>> train_cfg = dict(
... type="MultiTaskDataset",
... ann_file="train.json",
... data_root="data/mydataset",
... # the `data_prefix` is not required since all paths are
... # relative to the `data_root`.
... )
>>> train_dataset = build_dataset(train_cfg)
Args:
ann_file (str): The annotation file path. It can be either absolute
path or relative path to the ``data_root``.
metainfo (dict, optional): The extra meta information. It should be
a dict with the same format as the ``"metainfo"`` field in the
annotation file. Defaults to None.
data_root (str, optional): The root path of the data directory. It's
the prefix of the ``data_prefix`` and the ``ann_file``. And it can
be a remote path like "s3://openmmlab/xxx/". Defaults to None.
data_prefix (str, optional): The base folder relative to the
``data_root`` for the ``"img_path"`` field in the annotation file.
Defaults to None.
pipeline (Sequence[dict]): A list of dict, where each element
represents a operation defined in :mod:`mmcls.datasets.pipelines`.
Defaults to an empty tuple.
test_mode (bool): in train mode or test mode. Defaults to False.
file_client_args (dict, optional): Arguments to instantiate a
FileClient. See :class:`mmengine.fileio.FileClient` for details.
If None, automatically inference from the ``data_root``.
Defaults to None.
"""
METAINFO = dict()
def __init__(self,
ann_file: str,
metainfo: Optional[dict] = None,
data_root: Optional[str] = None,
data_prefix: Optional[str] = None,
pipeline: Sequence = (),
test_mode: bool = False,
file_client_args: Optional[dict] = None):
self.data_root = expanduser(data_root)
# Inference the file client
if self.data_root is not None:
file_client = FileClient.infer_client(
file_client_args, uri=self.data_root)
else:
file_client = FileClient(file_client_args)
self.file_client: FileClient = file_client
self.ann_file = self._join_root(expanduser(ann_file))
self.data_prefix = self._join_root(data_prefix)
self.test_mode = test_mode
self.pipeline = Compose(pipeline)
self.data_list = self.load_data_list(self.ann_file, metainfo)
def _join_root(self, path):
"""Join ``self.data_root`` with the specified path.
If the path is an absolute path, just return the path. And if the
path is None, return ``self.data_root``.
Examples:
>>> self.data_root = 'a/b/c'
>>> self._join_root('d/e/')
'a/b/c/d/e'
>>> self._join_root('https://openmmlab.com')
'https://openmmlab.com'
>>> self._join_root(None)
'a/b/c'
"""
if path is None:
return self.data_root
if isabs(path):
return path
joined_path = self.file_client.join_path(self.data_root, path)
return joined_path
@classmethod
def _get_meta_info(cls, in_metainfo: dict = None) -> dict:
"""Collect meta information from the dictionary of meta.
Args:
in_metainfo (dict): Meta information dict.
Returns:
dict: Parsed meta information.
"""
# `cls.METAINFO` will be overwritten by in_meta
metainfo = copy.deepcopy(cls.METAINFO)
if in_metainfo is None:
return metainfo
metainfo.update(in_metainfo)
return metainfo
def load_data_list(self, ann_file, metainfo_override=None):
"""Load annotations from an annotation file.
Args:
ann_file (str): Absolute annotation file path if ``self.root=None``
or relative path if ``self.root=/path/to/data/``.
Returns:
list[dict]: A list of annotation.
"""
annotations = mmengine.load(ann_file)
if not isinstance(annotations, dict):
raise TypeError(f'The annotations loaded from annotation file '
f'should be a dict, but got {type(annotations)}!')
if 'data_list' not in annotations:
raise ValueError('The annotation file must have the `data_list` '
'field.')
metainfo = annotations.get('metainfo', {})
raw_data_list = annotations['data_list']
# Set meta information.
assert isinstance(metainfo, dict), 'The `metainfo` field in the '\
f'annotation file should be a dict, but got {type(metainfo)}'
if metainfo_override is not None:
assert isinstance(metainfo_override, dict), 'The `metainfo` ' \
f'argument should be a dict, but got {type(metainfo_override)}'
metainfo.update(metainfo_override)
self._metainfo = self._get_meta_info(metainfo)
data_list = []
for i, raw_data in enumerate(raw_data_list):
try:
data_list.append(self.parse_data_info(raw_data))
except AssertionError as e:
raise RuntimeError(
f'The format check fails during parse the item {i} of '
f'the annotation file with error: {e}')
return data_list
def parse_data_info(self, raw_data):
"""Parse raw annotation to target format.
This method will return a dict which contains the data information of a
sample.
Args:
raw_data (dict): Raw data information load from ``ann_file``
Returns:
dict: Parsed annotation.
"""
assert isinstance(raw_data, dict), \
f'The item should be a dict, but got {type(raw_data)}'
assert 'img_path' in raw_data, \
"The item doesn't have `img_path` field."
data = dict(
img_path=self._join_root(raw_data['img_path']),
gt_label=raw_data['gt_label'],
)
return data
@property
def metainfo(self) -> dict:
"""Get meta information of dataset.
Returns:
dict: meta information collected from ``cls.METAINFO``,
annotation file and metainfo argument during instantiation.
"""
return copy.deepcopy(self._metainfo)
def prepare_data(self, idx):
"""Get data processed by ``self.pipeline``.
Args:
idx (int): The index of ``data_info``.
Returns:
Any: Depends on ``self.pipeline``.
"""
results = copy.deepcopy(self.data_list[idx])
return self.pipeline(results)
def __len__(self):
"""Get the length of the whole dataset.
Returns:
int: The length of filtered dataset.
"""
return len(self.data_list)
def __getitem__(self, idx):
"""Get the idx-th image and data information of dataset after
``self.pipeline``.
Args:
idx (int): The index of of the data.
Returns:
dict: The idx-th image and data information after
``self.pipeline``.
"""
return self.prepare_data(idx)
def __repr__(self):
"""Print the basic information of the dataset.
Returns:
str: Formatted string.
"""
head = 'Dataset ' + self.__class__.__name__
body = [f'Number of samples: \t{self.__len__()}']
if self.data_root is not None:
body.append(f'Root location: \t{self.data_root}')
body.append(f'Annotation file: \t{self.ann_file}')
if self.data_prefix is not None:
body.append(f'Prefix of images: \t{self.data_prefix}')
# -------------------- extra repr --------------------
tasks = self.metainfo['tasks']
body.append(f'For {len(tasks)} tasks')
for task in tasks:
body.append(f' {task} ')
# ----------------------------------------------------
if len(self.pipeline.transforms) > 0:
body.append('With transforms:')
for t in self.pipeline.transforms:
body.append(f' {t}')
lines = [head] + [' ' * 4 + line for line in body]
return '\n'.join(lines)
|