File size: 33,478 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from typing import List, Optional, Tuple

import mmcv
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.models.utils.misc import floordiv
from mmdet.registry import MODELS
from mmdet.utils import ConfigType, InstanceList, MultiConfig, OptConfigType
from ..layers import mask_matrix_nms
from ..utils import center_of_mass, generate_coordinate, multi_apply
from .solo_head import SOLOHead


class MaskFeatModule(BaseModule):
    """SOLOv2 mask feature map branch used in `SOLOv2: Dynamic and Fast
    Instance Segmentation. <https://arxiv.org/pdf/2003.10152>`_

    Args:
        in_channels (int): Number of channels in the input feature map.
        feat_channels (int): Number of hidden channels of the mask feature
             map branch.
        start_level (int): The starting feature map level from RPN that
             will be used to predict the mask feature map.
        end_level (int): The ending feature map level from rpn that
             will be used to predict the mask feature map.
        out_channels (int): Number of output channels of the mask feature
             map branch. This is the channel count of the mask
             feature map that to be dynamically convolved with the predicted
             kernel.
        mask_stride (int): Downsample factor of the mask feature map output.
            Defaults to 4.
        conv_cfg (dict): Config dict for convolution layer. Default: None.
        norm_cfg (dict): Config dict for normalization layer. Default: None.
        init_cfg (dict or list[dict], optional): Initialization config dict.
    """

    def __init__(
        self,
        in_channels: int,
        feat_channels: int,
        start_level: int,
        end_level: int,
        out_channels: int,
        mask_stride: int = 4,
        conv_cfg: OptConfigType = None,
        norm_cfg: OptConfigType = None,
        init_cfg: MultiConfig = [
            dict(type='Normal', layer='Conv2d', std=0.01)
        ]
    ) -> None:
        super().__init__(init_cfg=init_cfg)
        self.in_channels = in_channels
        self.feat_channels = feat_channels
        self.start_level = start_level
        self.end_level = end_level
        self.mask_stride = mask_stride
        assert start_level >= 0 and end_level >= start_level
        self.out_channels = out_channels
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self._init_layers()
        self.fp16_enabled = False

    def _init_layers(self) -> None:
        """Initialize layers of the head."""
        self.convs_all_levels = nn.ModuleList()
        for i in range(self.start_level, self.end_level + 1):
            convs_per_level = nn.Sequential()
            if i == 0:
                convs_per_level.add_module(
                    f'conv{i}',
                    ConvModule(
                        self.in_channels,
                        self.feat_channels,
                        3,
                        padding=1,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg,
                        inplace=False))
                self.convs_all_levels.append(convs_per_level)
                continue

            for j in range(i):
                if j == 0:
                    if i == self.end_level:
                        chn = self.in_channels + 2
                    else:
                        chn = self.in_channels
                    convs_per_level.add_module(
                        f'conv{j}',
                        ConvModule(
                            chn,
                            self.feat_channels,
                            3,
                            padding=1,
                            conv_cfg=self.conv_cfg,
                            norm_cfg=self.norm_cfg,
                            inplace=False))
                    convs_per_level.add_module(
                        f'upsample{j}',
                        nn.Upsample(
                            scale_factor=2,
                            mode='bilinear',
                            align_corners=False))
                    continue

                convs_per_level.add_module(
                    f'conv{j}',
                    ConvModule(
                        self.feat_channels,
                        self.feat_channels,
                        3,
                        padding=1,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg,
                        inplace=False))
                convs_per_level.add_module(
                    f'upsample{j}',
                    nn.Upsample(
                        scale_factor=2, mode='bilinear', align_corners=False))

            self.convs_all_levels.append(convs_per_level)

        self.conv_pred = ConvModule(
            self.feat_channels,
            self.out_channels,
            1,
            padding=0,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg)

    def forward(self, x: Tuple[Tensor]) -> Tensor:
        """Forward features from the upstream network.

        Args:
            x (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            Tensor: The predicted mask feature map.
        """
        inputs = x[self.start_level:self.end_level + 1]
        assert len(inputs) == (self.end_level - self.start_level + 1)
        feature_add_all_level = self.convs_all_levels[0](inputs[0])
        for i in range(1, len(inputs)):
            input_p = inputs[i]
            if i == len(inputs) - 1:
                coord_feat = generate_coordinate(input_p.size(),
                                                 input_p.device)
                input_p = torch.cat([input_p, coord_feat], 1)

            feature_add_all_level = feature_add_all_level + \
                self.convs_all_levels[i](input_p)

        feature_pred = self.conv_pred(feature_add_all_level)
        return feature_pred


@MODELS.register_module()
class SOLOV2Head(SOLOHead):
    """SOLOv2 mask head used in `SOLOv2: Dynamic and Fast Instance
    Segmentation. <https://arxiv.org/pdf/2003.10152>`_

    Args:
        mask_feature_head (dict): Config of SOLOv2MaskFeatHead.
        dynamic_conv_size (int): Dynamic Conv kernel size. Defaults to 1.
        dcn_cfg (dict): Dcn conv configurations in kernel_convs and cls_conv.
            Defaults to None.
        dcn_apply_to_all_conv (bool): Whether to use dcn in every layer of
            kernel_convs and cls_convs, or only the last layer. It shall be set
            `True` for the normal version of SOLOv2 and `False` for the
            light-weight version. Defaults to True.
        init_cfg (dict or list[dict], optional): Initialization config dict.
    """

    def __init__(self,
                 *args,
                 mask_feature_head: ConfigType,
                 dynamic_conv_size: int = 1,
                 dcn_cfg: OptConfigType = None,
                 dcn_apply_to_all_conv: bool = True,
                 init_cfg: MultiConfig = [
                     dict(type='Normal', layer='Conv2d', std=0.01),
                     dict(
                         type='Normal',
                         std=0.01,
                         bias_prob=0.01,
                         override=dict(name='conv_cls'))
                 ],
                 **kwargs) -> None:
        assert dcn_cfg is None or isinstance(dcn_cfg, dict)
        self.dcn_cfg = dcn_cfg
        self.with_dcn = dcn_cfg is not None
        self.dcn_apply_to_all_conv = dcn_apply_to_all_conv
        self.dynamic_conv_size = dynamic_conv_size
        mask_out_channels = mask_feature_head.get('out_channels')
        self.kernel_out_channels = \
            mask_out_channels * self.dynamic_conv_size * self.dynamic_conv_size

        super().__init__(*args, init_cfg=init_cfg, **kwargs)

        # update the in_channels of mask_feature_head
        if mask_feature_head.get('in_channels', None) is not None:
            if mask_feature_head.in_channels != self.in_channels:
                warnings.warn('The `in_channels` of SOLOv2MaskFeatHead and '
                              'SOLOv2Head should be same, changing '
                              'mask_feature_head.in_channels to '
                              f'{self.in_channels}')
                mask_feature_head.update(in_channels=self.in_channels)
        else:
            mask_feature_head.update(in_channels=self.in_channels)

        self.mask_feature_head = MaskFeatModule(**mask_feature_head)
        self.mask_stride = self.mask_feature_head.mask_stride
        self.fp16_enabled = False

    def _init_layers(self) -> None:
        """Initialize layers of the head."""
        self.cls_convs = nn.ModuleList()
        self.kernel_convs = nn.ModuleList()
        conv_cfg = None
        for i in range(self.stacked_convs):
            if self.with_dcn:
                if self.dcn_apply_to_all_conv:
                    conv_cfg = self.dcn_cfg
                elif i == self.stacked_convs - 1:
                    # light head
                    conv_cfg = self.dcn_cfg

            chn = self.in_channels + 2 if i == 0 else self.feat_channels
            self.kernel_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=conv_cfg,
                    norm_cfg=self.norm_cfg,
                    bias=self.norm_cfg is None))

            chn = self.in_channels if i == 0 else self.feat_channels
            self.cls_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=conv_cfg,
                    norm_cfg=self.norm_cfg,
                    bias=self.norm_cfg is None))

        self.conv_cls = nn.Conv2d(
            self.feat_channels, self.cls_out_channels, 3, padding=1)

        self.conv_kernel = nn.Conv2d(
            self.feat_channels, self.kernel_out_channels, 3, padding=1)

    def forward(self, x):
        """Forward features from the upstream network.

        Args:
            x (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            tuple: A tuple of classification scores, mask prediction,
            and mask features.

                - mlvl_kernel_preds (list[Tensor]): Multi-level dynamic kernel
                  prediction. The kernel is used to generate instance
                  segmentation masks by dynamic convolution. Each element in
                  the list has shape
                  (batch_size, kernel_out_channels, num_grids, num_grids).
                - mlvl_cls_preds (list[Tensor]): Multi-level scores. Each
                  element in the list has shape
                  (batch_size, num_classes, num_grids, num_grids).
                - mask_feats (Tensor): Unified mask feature map used to
                  generate instance segmentation masks by dynamic convolution.
                  Has shape (batch_size, mask_out_channels, h, w).
        """
        assert len(x) == self.num_levels
        mask_feats = self.mask_feature_head(x)
        ins_kernel_feats = self.resize_feats(x)
        mlvl_kernel_preds = []
        mlvl_cls_preds = []
        for i in range(self.num_levels):
            ins_kernel_feat = ins_kernel_feats[i]
            # ins branch
            # concat coord
            coord_feat = generate_coordinate(ins_kernel_feat.size(),
                                             ins_kernel_feat.device)
            ins_kernel_feat = torch.cat([ins_kernel_feat, coord_feat], 1)

            # kernel branch
            kernel_feat = ins_kernel_feat
            kernel_feat = F.interpolate(
                kernel_feat,
                size=self.num_grids[i],
                mode='bilinear',
                align_corners=False)

            cate_feat = kernel_feat[:, :-2, :, :]

            kernel_feat = kernel_feat.contiguous()
            for i, kernel_conv in enumerate(self.kernel_convs):
                kernel_feat = kernel_conv(kernel_feat)
            kernel_pred = self.conv_kernel(kernel_feat)

            # cate branch
            cate_feat = cate_feat.contiguous()
            for i, cls_conv in enumerate(self.cls_convs):
                cate_feat = cls_conv(cate_feat)
            cate_pred = self.conv_cls(cate_feat)

            mlvl_kernel_preds.append(kernel_pred)
            mlvl_cls_preds.append(cate_pred)

        return mlvl_kernel_preds, mlvl_cls_preds, mask_feats

    def _get_targets_single(self,
                            gt_instances: InstanceData,
                            featmap_sizes: Optional[list] = None) -> tuple:
        """Compute targets for predictions of single image.

        Args:
            gt_instances (:obj:`InstanceData`): Ground truth of instance
                annotations. It should includes ``bboxes``, ``labels``,
                and ``masks`` attributes.
            featmap_sizes (list[:obj:`torch.size`]): Size of each
                feature map from feature pyramid, each element
                means (feat_h, feat_w). Defaults to None.

        Returns:
            Tuple: Usually returns a tuple containing targets for predictions.

                - mlvl_pos_mask_targets (list[Tensor]): Each element represent
                  the binary mask targets for positive points in this
                  level, has shape (num_pos, out_h, out_w).
                - mlvl_labels (list[Tensor]): Each element is
                  classification labels for all
                  points in this level, has shape
                  (num_grid, num_grid).
                - mlvl_pos_masks  (list[Tensor]): Each element is
                  a `BoolTensor` to represent whether the
                  corresponding point in single level
                  is positive, has shape (num_grid **2).
                - mlvl_pos_indexes  (list[list]): Each element
                  in the list contains the positive index in
                  corresponding level, has shape (num_pos).
        """
        gt_labels = gt_instances.labels
        device = gt_labels.device

        gt_bboxes = gt_instances.bboxes
        gt_areas = torch.sqrt((gt_bboxes[:, 2] - gt_bboxes[:, 0]) *
                              (gt_bboxes[:, 3] - gt_bboxes[:, 1]))
        gt_masks = gt_instances.masks.to_tensor(
            dtype=torch.bool, device=device)

        mlvl_pos_mask_targets = []
        mlvl_pos_indexes = []
        mlvl_labels = []
        mlvl_pos_masks = []
        for (lower_bound, upper_bound), num_grid \
                in zip(self.scale_ranges, self.num_grids):
            mask_target = []
            # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
            pos_index = []
            labels = torch.zeros([num_grid, num_grid],
                                 dtype=torch.int64,
                                 device=device) + self.num_classes
            pos_mask = torch.zeros([num_grid**2],
                                   dtype=torch.bool,
                                   device=device)

            gt_inds = ((gt_areas >= lower_bound) &
                       (gt_areas <= upper_bound)).nonzero().flatten()
            if len(gt_inds) == 0:
                mlvl_pos_mask_targets.append(
                    torch.zeros([0, featmap_sizes[0], featmap_sizes[1]],
                                dtype=torch.uint8,
                                device=device))
                mlvl_labels.append(labels)
                mlvl_pos_masks.append(pos_mask)
                mlvl_pos_indexes.append([])
                continue
            hit_gt_bboxes = gt_bboxes[gt_inds]
            hit_gt_labels = gt_labels[gt_inds]
            hit_gt_masks = gt_masks[gt_inds, ...]

            pos_w_ranges = 0.5 * (hit_gt_bboxes[:, 2] -
                                  hit_gt_bboxes[:, 0]) * self.pos_scale
            pos_h_ranges = 0.5 * (hit_gt_bboxes[:, 3] -
                                  hit_gt_bboxes[:, 1]) * self.pos_scale

            # Make sure hit_gt_masks has a value
            valid_mask_flags = hit_gt_masks.sum(dim=-1).sum(dim=-1) > 0

            for gt_mask, gt_label, pos_h_range, pos_w_range, \
                valid_mask_flag in \
                    zip(hit_gt_masks, hit_gt_labels, pos_h_ranges,
                        pos_w_ranges, valid_mask_flags):
                if not valid_mask_flag:
                    continue
                upsampled_size = (featmap_sizes[0] * self.mask_stride,
                                  featmap_sizes[1] * self.mask_stride)
                center_h, center_w = center_of_mass(gt_mask)

                coord_w = int(
                    floordiv((center_w / upsampled_size[1]), (1. / num_grid),
                             rounding_mode='trunc'))
                coord_h = int(
                    floordiv((center_h / upsampled_size[0]), (1. / num_grid),
                             rounding_mode='trunc'))

                # left, top, right, down
                top_box = max(
                    0,
                    int(
                        floordiv(
                            (center_h - pos_h_range) / upsampled_size[0],
                            (1. / num_grid),
                            rounding_mode='trunc')))
                down_box = min(
                    num_grid - 1,
                    int(
                        floordiv(
                            (center_h + pos_h_range) / upsampled_size[0],
                            (1. / num_grid),
                            rounding_mode='trunc')))
                left_box = max(
                    0,
                    int(
                        floordiv(
                            (center_w - pos_w_range) / upsampled_size[1],
                            (1. / num_grid),
                            rounding_mode='trunc')))
                right_box = min(
                    num_grid - 1,
                    int(
                        floordiv(
                            (center_w + pos_w_range) / upsampled_size[1],
                            (1. / num_grid),
                            rounding_mode='trunc')))

                top = max(top_box, coord_h - 1)
                down = min(down_box, coord_h + 1)
                left = max(coord_w - 1, left_box)
                right = min(right_box, coord_w + 1)

                labels[top:(down + 1), left:(right + 1)] = gt_label
                # ins
                gt_mask = np.uint8(gt_mask.cpu().numpy())
                # Follow the original implementation, F.interpolate is
                # different from cv2 and opencv
                gt_mask = mmcv.imrescale(gt_mask, scale=1. / self.mask_stride)
                gt_mask = torch.from_numpy(gt_mask).to(device=device)

                for i in range(top, down + 1):
                    for j in range(left, right + 1):
                        index = int(i * num_grid + j)
                        this_mask_target = torch.zeros(
                            [featmap_sizes[0], featmap_sizes[1]],
                            dtype=torch.uint8,
                            device=device)
                        this_mask_target[:gt_mask.shape[0], :gt_mask.
                                         shape[1]] = gt_mask
                        mask_target.append(this_mask_target)
                        pos_mask[index] = True
                        pos_index.append(index)
            if len(mask_target) == 0:
                mask_target = torch.zeros(
                    [0, featmap_sizes[0], featmap_sizes[1]],
                    dtype=torch.uint8,
                    device=device)
            else:
                mask_target = torch.stack(mask_target, 0)
            mlvl_pos_mask_targets.append(mask_target)
            mlvl_labels.append(labels)
            mlvl_pos_masks.append(pos_mask)
            mlvl_pos_indexes.append(pos_index)
        return (mlvl_pos_mask_targets, mlvl_labels, mlvl_pos_masks,
                mlvl_pos_indexes)

    def loss_by_feat(self, mlvl_kernel_preds: List[Tensor],
                     mlvl_cls_preds: List[Tensor], mask_feats: Tensor,
                     batch_gt_instances: InstanceList,
                     batch_img_metas: List[dict], **kwargs) -> dict:
        """Calculate the loss based on the features extracted by the mask head.

        Args:
            mlvl_kernel_preds (list[Tensor]): Multi-level dynamic kernel
                prediction. The kernel is used to generate instance
                segmentation masks by dynamic convolution. Each element in the
                list has shape
                (batch_size, kernel_out_channels, num_grids, num_grids).
            mlvl_cls_preds (list[Tensor]): Multi-level scores. Each element
                in the list has shape
                (batch_size, num_classes, num_grids, num_grids).
            mask_feats (Tensor): Unified mask feature map used to generate
                instance segmentation masks by dynamic convolution. Has shape
                (batch_size, mask_out_channels, h, w).
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes``, ``masks``,
                and ``labels`` attributes.
            batch_img_metas (list[dict]): Meta information of multiple images.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        featmap_sizes = mask_feats.size()[-2:]

        pos_mask_targets, labels, pos_masks, pos_indexes = multi_apply(
            self._get_targets_single,
            batch_gt_instances,
            featmap_sizes=featmap_sizes)

        mlvl_mask_targets = [
            torch.cat(lvl_mask_targets, 0)
            for lvl_mask_targets in zip(*pos_mask_targets)
        ]

        mlvl_pos_kernel_preds = []
        for lvl_kernel_preds, lvl_pos_indexes in zip(mlvl_kernel_preds,
                                                     zip(*pos_indexes)):
            lvl_pos_kernel_preds = []
            for img_lvl_kernel_preds, img_lvl_pos_indexes in zip(
                    lvl_kernel_preds, lvl_pos_indexes):
                img_lvl_pos_kernel_preds = img_lvl_kernel_preds.view(
                    img_lvl_kernel_preds.shape[0], -1)[:, img_lvl_pos_indexes]
                lvl_pos_kernel_preds.append(img_lvl_pos_kernel_preds)
            mlvl_pos_kernel_preds.append(lvl_pos_kernel_preds)

        # make multilevel mlvl_mask_pred
        mlvl_mask_preds = []
        for lvl_pos_kernel_preds in mlvl_pos_kernel_preds:
            lvl_mask_preds = []
            for img_id, img_lvl_pos_kernel_pred in enumerate(
                    lvl_pos_kernel_preds):
                if img_lvl_pos_kernel_pred.size()[-1] == 0:
                    continue
                img_mask_feats = mask_feats[[img_id]]
                h, w = img_mask_feats.shape[-2:]
                num_kernel = img_lvl_pos_kernel_pred.shape[1]
                img_lvl_mask_pred = F.conv2d(
                    img_mask_feats,
                    img_lvl_pos_kernel_pred.permute(1, 0).view(
                        num_kernel, -1, self.dynamic_conv_size,
                        self.dynamic_conv_size),
                    stride=1).view(-1, h, w)
                lvl_mask_preds.append(img_lvl_mask_pred)
            if len(lvl_mask_preds) == 0:
                lvl_mask_preds = None
            else:
                lvl_mask_preds = torch.cat(lvl_mask_preds, 0)
            mlvl_mask_preds.append(lvl_mask_preds)
        # dice loss
        num_pos = 0
        for img_pos_masks in pos_masks:
            for lvl_img_pos_masks in img_pos_masks:
                # Fix `Tensor` object has no attribute `count_nonzero()`
                # in PyTorch 1.6, the type of `lvl_img_pos_masks`
                # should be `torch.bool`.
                num_pos += lvl_img_pos_masks.nonzero().numel()
        loss_mask = []
        for lvl_mask_preds, lvl_mask_targets in zip(mlvl_mask_preds,
                                                    mlvl_mask_targets):
            if lvl_mask_preds is None:
                continue
            loss_mask.append(
                self.loss_mask(
                    lvl_mask_preds,
                    lvl_mask_targets,
                    reduction_override='none'))
        if num_pos > 0:
            loss_mask = torch.cat(loss_mask).sum() / num_pos
        else:
            loss_mask = mask_feats.sum() * 0

        # cate
        flatten_labels = [
            torch.cat(
                [img_lvl_labels.flatten() for img_lvl_labels in lvl_labels])
            for lvl_labels in zip(*labels)
        ]
        flatten_labels = torch.cat(flatten_labels)

        flatten_cls_preds = [
            lvl_cls_preds.permute(0, 2, 3, 1).reshape(-1, self.num_classes)
            for lvl_cls_preds in mlvl_cls_preds
        ]
        flatten_cls_preds = torch.cat(flatten_cls_preds)

        loss_cls = self.loss_cls(
            flatten_cls_preds, flatten_labels, avg_factor=num_pos + 1)
        return dict(loss_mask=loss_mask, loss_cls=loss_cls)

    def predict_by_feat(self, mlvl_kernel_preds: List[Tensor],
                        mlvl_cls_scores: List[Tensor], mask_feats: Tensor,
                        batch_img_metas: List[dict], **kwargs) -> InstanceList:
        """Transform a batch of output features extracted from the head into
        mask results.

        Args:
            mlvl_kernel_preds (list[Tensor]): Multi-level dynamic kernel
                prediction. The kernel is used to generate instance
                segmentation masks by dynamic convolution. Each element in the
                list has shape
                (batch_size, kernel_out_channels, num_grids, num_grids).
            mlvl_cls_scores (list[Tensor]): Multi-level scores. Each element
                in the list has shape
                (batch_size, num_classes, num_grids, num_grids).
            mask_feats (Tensor): Unified mask feature map used to generate
                instance segmentation masks by dynamic convolution. Has shape
                (batch_size, mask_out_channels, h, w).
            batch_img_metas (list[dict]): Meta information of all images.

        Returns:
            list[:obj:`InstanceData`]: Processed results of multiple
            images.Each :obj:`InstanceData` usually contains
            following keys.

                - scores (Tensor): Classification scores, has shape
                  (num_instance,).
                - labels (Tensor): Has shape (num_instances,).
                - masks (Tensor): Processed mask results, has
                  shape (num_instances, h, w).
        """
        num_levels = len(mlvl_cls_scores)
        assert len(mlvl_kernel_preds) == len(mlvl_cls_scores)

        for lvl in range(num_levels):
            cls_scores = mlvl_cls_scores[lvl]
            cls_scores = cls_scores.sigmoid()
            local_max = F.max_pool2d(cls_scores, 2, stride=1, padding=1)
            keep_mask = local_max[:, :, :-1, :-1] == cls_scores
            cls_scores = cls_scores * keep_mask
            mlvl_cls_scores[lvl] = cls_scores.permute(0, 2, 3, 1)

        result_list = []
        for img_id in range(len(batch_img_metas)):
            img_cls_pred = [
                mlvl_cls_scores[lvl][img_id].view(-1, self.cls_out_channels)
                for lvl in range(num_levels)
            ]
            img_mask_feats = mask_feats[[img_id]]
            img_kernel_pred = [
                mlvl_kernel_preds[lvl][img_id].permute(1, 2, 0).view(
                    -1, self.kernel_out_channels) for lvl in range(num_levels)
            ]
            img_cls_pred = torch.cat(img_cls_pred, dim=0)
            img_kernel_pred = torch.cat(img_kernel_pred, dim=0)
            result = self._predict_by_feat_single(
                img_kernel_pred,
                img_cls_pred,
                img_mask_feats,
                img_meta=batch_img_metas[img_id])
            result_list.append(result)
        return result_list

    def _predict_by_feat_single(self,
                                kernel_preds: Tensor,
                                cls_scores: Tensor,
                                mask_feats: Tensor,
                                img_meta: dict,
                                cfg: OptConfigType = None) -> InstanceData:
        """Transform a single image's features extracted from the head into
        mask results.

        Args:
            kernel_preds (Tensor): Dynamic kernel prediction of all points
                in single image, has shape
                (num_points, kernel_out_channels).
            cls_scores (Tensor): Classification score of all points
                in single image, has shape (num_points, num_classes).
            mask_feats (Tensor): Mask prediction of all points in
                single image, has shape (num_points, feat_h, feat_w).
            img_meta (dict): Meta information of corresponding image.
            cfg (dict, optional): Config used in test phase.
                Defaults to None.

        Returns:
            :obj:`InstanceData`: Processed results of single image.
             it usually contains following keys.

                - scores (Tensor): Classification scores, has shape
                  (num_instance,).
                - labels (Tensor): Has shape (num_instances,).
                - masks (Tensor): Processed mask results, has
                  shape (num_instances, h, w).
        """

        def empty_results(cls_scores, ori_shape):
            """Generate a empty results."""
            results = InstanceData()
            results.scores = cls_scores.new_ones(0)
            results.masks = cls_scores.new_zeros(0, *ori_shape)
            results.labels = cls_scores.new_ones(0)
            results.bboxes = cls_scores.new_zeros(0, 4)
            return results

        cfg = self.test_cfg if cfg is None else cfg
        assert len(kernel_preds) == len(cls_scores)

        featmap_size = mask_feats.size()[-2:]

        # overall info
        h, w = img_meta['img_shape'][:2]
        upsampled_size = (featmap_size[0] * self.mask_stride,
                          featmap_size[1] * self.mask_stride)

        # process.
        score_mask = (cls_scores > cfg.score_thr)
        cls_scores = cls_scores[score_mask]
        if len(cls_scores) == 0:
            return empty_results(cls_scores, img_meta['ori_shape'][:2])

        # cate_labels & kernel_preds
        inds = score_mask.nonzero()
        cls_labels = inds[:, 1]
        kernel_preds = kernel_preds[inds[:, 0]]

        # trans vector.
        lvl_interval = cls_labels.new_tensor(self.num_grids).pow(2).cumsum(0)
        strides = kernel_preds.new_ones(lvl_interval[-1])

        strides[:lvl_interval[0]] *= self.strides[0]
        for lvl in range(1, self.num_levels):
            strides[lvl_interval[lvl -
                                 1]:lvl_interval[lvl]] *= self.strides[lvl]
        strides = strides[inds[:, 0]]

        # mask encoding.
        kernel_preds = kernel_preds.view(
            kernel_preds.size(0), -1, self.dynamic_conv_size,
            self.dynamic_conv_size)
        mask_preds = F.conv2d(
            mask_feats, kernel_preds, stride=1).squeeze(0).sigmoid()
        # mask.
        masks = mask_preds > cfg.mask_thr
        sum_masks = masks.sum((1, 2)).float()
        keep = sum_masks > strides
        if keep.sum() == 0:
            return empty_results(cls_scores, img_meta['ori_shape'][:2])
        masks = masks[keep]
        mask_preds = mask_preds[keep]
        sum_masks = sum_masks[keep]
        cls_scores = cls_scores[keep]
        cls_labels = cls_labels[keep]

        # maskness.
        mask_scores = (mask_preds * masks).sum((1, 2)) / sum_masks
        cls_scores *= mask_scores

        scores, labels, _, keep_inds = mask_matrix_nms(
            masks,
            cls_labels,
            cls_scores,
            mask_area=sum_masks,
            nms_pre=cfg.nms_pre,
            max_num=cfg.max_per_img,
            kernel=cfg.kernel,
            sigma=cfg.sigma,
            filter_thr=cfg.filter_thr)
        if len(keep_inds) == 0:
            return empty_results(cls_scores, img_meta['ori_shape'][:2])
        mask_preds = mask_preds[keep_inds]
        mask_preds = F.interpolate(
            mask_preds.unsqueeze(0),
            size=upsampled_size,
            mode='bilinear',
            align_corners=False)[:, :, :h, :w]
        mask_preds = F.interpolate(
            mask_preds,
            size=img_meta['ori_shape'][:2],
            mode='bilinear',
            align_corners=False).squeeze(0)
        masks = mask_preds > cfg.mask_thr

        results = InstanceData()
        results.masks = masks
        results.labels = labels
        results.scores = scores
        # create an empty bbox in InstanceData to avoid bugs when
        # calculating metrics.
        results.bboxes = results.scores.new_zeros(len(scores), 4)

        return results