File size: 29,551 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Sequence, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, Scale
from mmengine.config import ConfigDict
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures.bbox import bbox_overlaps
from mmdet.utils import (ConfigType, InstanceList, MultiConfig, OptConfigType,
                         OptInstanceList, reduce_mean)
from ..task_modules.prior_generators import anchor_inside_flags
from ..task_modules.samplers import PseudoSampler
from ..utils import (filter_scores_and_topk, images_to_levels, multi_apply,
                     unmap)
from .anchor_head import AnchorHead


class Integral(nn.Module):
    """A fixed layer for calculating integral result from distribution.

    This layer calculates the target location by :math: ``sum{P(y_i) * y_i}``,
    P(y_i) denotes the softmax vector that represents the discrete distribution
    y_i denotes the discrete set, usually {0, 1, 2, ..., reg_max}

    Args:
        reg_max (int): The maximal value of the discrete set. Defaults to 16.
            You may want to reset it according to your new dataset or related
            settings.
    """

    def __init__(self, reg_max: int = 16) -> None:
        super().__init__()
        self.reg_max = reg_max
        self.register_buffer('project',
                             torch.linspace(0, self.reg_max, self.reg_max + 1))

    def forward(self, x: Tensor) -> Tensor:
        """Forward feature from the regression head to get integral result of
        bounding box location.

        Args:
            x (Tensor): Features of the regression head, shape (N, 4*(n+1)),
                n is self.reg_max.

        Returns:
            x (Tensor): Integral result of box locations, i.e., distance
                offsets from the box center in four directions, shape (N, 4).
        """
        x = F.softmax(x.reshape(-1, self.reg_max + 1), dim=1)
        x = F.linear(x, self.project.type_as(x)).reshape(-1, 4)
        return x


@MODELS.register_module()
class GFLHead(AnchorHead):
    """Generalized Focal Loss: Learning Qualified and Distributed Bounding
    Boxes for Dense Object Detection.

    GFL head structure is similar with ATSS, however GFL uses
    1) joint representation for classification and localization quality, and
    2) flexible General distribution for bounding box locations,
    which are supervised by
    Quality Focal Loss (QFL) and Distribution Focal Loss (DFL), respectively

    https://arxiv.org/abs/2006.04388

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        stacked_convs (int): Number of conv layers in cls and reg tower.
            Defaults to 4.
        conv_cfg (:obj:`ConfigDict` or dict, optional): dictionary to construct
            and config conv layer. Defaults to None.
        norm_cfg (:obj:`ConfigDict` or dict): dictionary to construct and
            config norm layer. Default: dict(type='GN', num_groups=32,
            requires_grad=True).
        loss_qfl (:obj:`ConfigDict` or dict): Config of Quality Focal Loss
            (QFL).
        bbox_coder (:obj:`ConfigDict` or dict): Config of bbox coder. Defaults
             to 'DistancePointBBoxCoder'.
        reg_max (int): Max value of integral set :math: ``{0, ..., reg_max}``
            in QFL setting. Defaults to 16.
        init_cfg (:obj:`ConfigDict` or dict or list[dict] or
            list[:obj:`ConfigDict`]): Initialization config dict.
    Example:
        >>> self = GFLHead(11, 7)
        >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]]
        >>> cls_quality_score, bbox_pred = self.forward(feats)
        >>> assert len(cls_quality_score) == len(self.scales)
    """

    def __init__(self,
                 num_classes: int,
                 in_channels: int,
                 stacked_convs: int = 4,
                 conv_cfg: OptConfigType = None,
                 norm_cfg: ConfigType = dict(
                     type='GN', num_groups=32, requires_grad=True),
                 loss_dfl: ConfigType = dict(
                     type='DistributionFocalLoss', loss_weight=0.25),
                 bbox_coder: ConfigType = dict(type='DistancePointBBoxCoder'),
                 reg_max: int = 16,
                 init_cfg: MultiConfig = dict(
                     type='Normal',
                     layer='Conv2d',
                     std=0.01,
                     override=dict(
                         type='Normal',
                         name='gfl_cls',
                         std=0.01,
                         bias_prob=0.01)),
                 **kwargs) -> None:
        self.stacked_convs = stacked_convs
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.reg_max = reg_max
        super().__init__(
            num_classes=num_classes,
            in_channels=in_channels,
            bbox_coder=bbox_coder,
            init_cfg=init_cfg,
            **kwargs)

        if self.train_cfg:
            self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
            if self.train_cfg.get('sampler', None) is not None:
                self.sampler = TASK_UTILS.build(
                    self.train_cfg['sampler'], default_args=dict(context=self))
            else:
                self.sampler = PseudoSampler(context=self)

        self.integral = Integral(self.reg_max)
        self.loss_dfl = MODELS.build(loss_dfl)

    def _init_layers(self) -> None:
        """Initialize layers of the head."""
        self.relu = nn.ReLU()
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            self.cls_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
            self.reg_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
        assert self.num_anchors == 1, 'anchor free version'
        self.gfl_cls = nn.Conv2d(
            self.feat_channels, self.cls_out_channels, 3, padding=1)
        self.gfl_reg = nn.Conv2d(
            self.feat_channels, 4 * (self.reg_max + 1), 3, padding=1)
        self.scales = nn.ModuleList(
            [Scale(1.0) for _ in self.prior_generator.strides])

    def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor]]:
        """Forward features from the upstream network.

        Args:
            x (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            tuple: Usually a tuple of classification scores and bbox prediction

            - cls_scores (list[Tensor]): Classification and quality (IoU)
              joint scores for all scale levels, each is a 4D-tensor,
              the channel number is num_classes.
            - bbox_preds (list[Tensor]): Box distribution logits for all
              scale levels, each is a 4D-tensor, the channel number is
              4*(n+1), n is max value of integral set.
        """
        return multi_apply(self.forward_single, x, self.scales)

    def forward_single(self, x: Tensor, scale: Scale) -> Sequence[Tensor]:
        """Forward feature of a single scale level.

        Args:
            x (Tensor): Features of a single scale level.
            scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize
                the bbox prediction.

        Returns:
            tuple:

            - cls_score (Tensor): Cls and quality joint scores for a single
              scale level the channel number is num_classes.
            - bbox_pred (Tensor): Box distribution logits for a single scale
              level, the channel number is 4*(n+1), n is max value of
              integral set.
        """
        cls_feat = x
        reg_feat = x
        for cls_conv in self.cls_convs:
            cls_feat = cls_conv(cls_feat)
        for reg_conv in self.reg_convs:
            reg_feat = reg_conv(reg_feat)
        cls_score = self.gfl_cls(cls_feat)
        bbox_pred = scale(self.gfl_reg(reg_feat)).float()
        return cls_score, bbox_pred

    def anchor_center(self, anchors: Tensor) -> Tensor:
        """Get anchor centers from anchors.

        Args:
            anchors (Tensor): Anchor list with shape (N, 4), ``xyxy`` format.

        Returns:
            Tensor: Anchor centers with shape (N, 2), ``xy`` format.
        """
        anchors_cx = (anchors[..., 2] + anchors[..., 0]) / 2
        anchors_cy = (anchors[..., 3] + anchors[..., 1]) / 2
        return torch.stack([anchors_cx, anchors_cy], dim=-1)

    def loss_by_feat_single(self, anchors: Tensor, cls_score: Tensor,
                            bbox_pred: Tensor, labels: Tensor,
                            label_weights: Tensor, bbox_targets: Tensor,
                            stride: Tuple[int], avg_factor: int) -> dict:
        """Calculate the loss of a single scale level based on the features
        extracted by the detection head.

        Args:
            anchors (Tensor): Box reference for each scale level with shape
                (N, num_total_anchors, 4).
            cls_score (Tensor): Cls and quality joint scores for each scale
                level has shape (N, num_classes, H, W).
            bbox_pred (Tensor): Box distribution logits for each scale
                level with shape (N, 4*(n+1), H, W), n is max value of integral
                set.
            labels (Tensor): Labels of each anchors with shape
                (N, num_total_anchors).
            label_weights (Tensor): Label weights of each anchor with shape
                (N, num_total_anchors)
            bbox_targets (Tensor): BBox regression targets of each anchor
                weight shape (N, num_total_anchors, 4).
            stride (Tuple[int]): Stride in this scale level.
            avg_factor (int): Average factor that is used to average
                the loss. When using sampling method, avg_factor is usually
                the sum of positive and negative priors. When using
                `PseudoSampler`, `avg_factor` is usually equal to the number
                of positive priors.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        assert stride[0] == stride[1], 'h stride is not equal to w stride!'
        anchors = anchors.reshape(-1, 4)
        cls_score = cls_score.permute(0, 2, 3,
                                      1).reshape(-1, self.cls_out_channels)
        bbox_pred = bbox_pred.permute(0, 2, 3,
                                      1).reshape(-1, 4 * (self.reg_max + 1))
        bbox_targets = bbox_targets.reshape(-1, 4)
        labels = labels.reshape(-1)
        label_weights = label_weights.reshape(-1)

        # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
        bg_class_ind = self.num_classes
        pos_inds = ((labels >= 0)
                    & (labels < bg_class_ind)).nonzero().squeeze(1)
        score = label_weights.new_zeros(labels.shape)

        if len(pos_inds) > 0:
            pos_bbox_targets = bbox_targets[pos_inds]
            pos_bbox_pred = bbox_pred[pos_inds]
            pos_anchors = anchors[pos_inds]
            pos_anchor_centers = self.anchor_center(pos_anchors) / stride[0]

            weight_targets = cls_score.detach().sigmoid()
            weight_targets = weight_targets.max(dim=1)[0][pos_inds]
            pos_bbox_pred_corners = self.integral(pos_bbox_pred)
            pos_decode_bbox_pred = self.bbox_coder.decode(
                pos_anchor_centers, pos_bbox_pred_corners)
            pos_decode_bbox_targets = pos_bbox_targets / stride[0]
            score[pos_inds] = bbox_overlaps(
                pos_decode_bbox_pred.detach(),
                pos_decode_bbox_targets,
                is_aligned=True)
            pred_corners = pos_bbox_pred.reshape(-1, self.reg_max + 1)
            target_corners = self.bbox_coder.encode(pos_anchor_centers,
                                                    pos_decode_bbox_targets,
                                                    self.reg_max).reshape(-1)

            # regression loss
            loss_bbox = self.loss_bbox(
                pos_decode_bbox_pred,
                pos_decode_bbox_targets,
                weight=weight_targets,
                avg_factor=1.0)

            # dfl loss
            loss_dfl = self.loss_dfl(
                pred_corners,
                target_corners,
                weight=weight_targets[:, None].expand(-1, 4).reshape(-1),
                avg_factor=4.0)
        else:
            loss_bbox = bbox_pred.sum() * 0
            loss_dfl = bbox_pred.sum() * 0
            weight_targets = bbox_pred.new_tensor(0)

        # cls (qfl) loss
        loss_cls = self.loss_cls(
            cls_score, (labels, score),
            weight=label_weights,
            avg_factor=avg_factor)

        return loss_cls, loss_bbox, loss_dfl, weight_targets.sum()

    def loss_by_feat(
            self,
            cls_scores: List[Tensor],
            bbox_preds: List[Tensor],
            batch_gt_instances: InstanceList,
            batch_img_metas: List[dict],
            batch_gt_instances_ignore: OptInstanceList = None) -> dict:
        """Calculate the loss based on the features extracted by the detection
        head.

        Args:
            cls_scores (list[Tensor]): Cls and quality scores for each scale
                level has shape (N, num_classes, H, W).
            bbox_preds (list[Tensor]): Box distribution logits for each scale
                level with shape (N, 4*(n+1), H, W), n is max value of integral
                set.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance.  It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """

        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        assert len(featmap_sizes) == self.prior_generator.num_levels

        device = cls_scores[0].device
        anchor_list, valid_flag_list = self.get_anchors(
            featmap_sizes, batch_img_metas, device=device)

        cls_reg_targets = self.get_targets(
            anchor_list,
            valid_flag_list,
            batch_gt_instances,
            batch_img_metas,
            batch_gt_instances_ignore=batch_gt_instances_ignore)

        (anchor_list, labels_list, label_weights_list, bbox_targets_list,
         bbox_weights_list, avg_factor) = cls_reg_targets

        avg_factor = reduce_mean(
            torch.tensor(avg_factor, dtype=torch.float, device=device)).item()

        losses_cls, losses_bbox, losses_dfl,\
            avg_factor = multi_apply(
                self.loss_by_feat_single,
                anchor_list,
                cls_scores,
                bbox_preds,
                labels_list,
                label_weights_list,
                bbox_targets_list,
                self.prior_generator.strides,
                avg_factor=avg_factor)

        avg_factor = sum(avg_factor)
        avg_factor = reduce_mean(avg_factor).clamp_(min=1).item()
        losses_bbox = list(map(lambda x: x / avg_factor, losses_bbox))
        losses_dfl = list(map(lambda x: x / avg_factor, losses_dfl))
        return dict(
            loss_cls=losses_cls, loss_bbox=losses_bbox, loss_dfl=losses_dfl)

    def _predict_by_feat_single(self,
                                cls_score_list: List[Tensor],
                                bbox_pred_list: List[Tensor],
                                score_factor_list: List[Tensor],
                                mlvl_priors: List[Tensor],
                                img_meta: dict,
                                cfg: ConfigDict,
                                rescale: bool = False,
                                with_nms: bool = True) -> InstanceData:
        """Transform a single image's features extracted from the head into
        bbox results.

        Args:
            cls_score_list (list[Tensor]): Box scores from all scale
                levels of a single image, each item has shape
                (num_priors * num_classes, H, W).
            bbox_pred_list (list[Tensor]): Box energies / deltas from
                all scale levels of a single image, each item has shape
                (num_priors * 4, H, W).
            score_factor_list (list[Tensor]): Score factor from all scale
                levels of a single image. GFL head does not need this value.
            mlvl_priors (list[Tensor]): Each element in the list is
                the priors of a single level in feature pyramid, has shape
                (num_priors, 4).
            img_meta (dict): Image meta info.
            cfg (:obj: `ConfigDict`): Test / postprocessing configuration,
                if None, test_cfg would be used.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.
            with_nms (bool): If True, do nms before return boxes.
                Defaults to True.

        Returns:
            tuple[Tensor]: Results of detected bboxes and labels. If with_nms
            is False and mlvl_score_factor is None, return mlvl_bboxes and
            mlvl_scores, else return mlvl_bboxes, mlvl_scores and
            mlvl_score_factor. Usually with_nms is False is used for aug
            test. If with_nms is True, then return the following format

            - det_bboxes (Tensor): Predicted bboxes with shape
              [num_bboxes, 5], where the first 4 columns are bounding
              box positions (tl_x, tl_y, br_x, br_y) and the 5-th
              column are scores between 0 and 1.
            - det_labels (Tensor): Predicted labels of the corresponding
              box with shape [num_bboxes].
        """
        cfg = self.test_cfg if cfg is None else cfg
        img_shape = img_meta['img_shape']
        nms_pre = cfg.get('nms_pre', -1)

        mlvl_bboxes = []
        mlvl_scores = []
        mlvl_labels = []
        for level_idx, (cls_score, bbox_pred, stride, priors) in enumerate(
                zip(cls_score_list, bbox_pred_list,
                    self.prior_generator.strides, mlvl_priors)):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
            assert stride[0] == stride[1]

            bbox_pred = bbox_pred.permute(1, 2, 0)
            bbox_pred = self.integral(bbox_pred) * stride[0]

            scores = cls_score.permute(1, 2, 0).reshape(
                -1, self.cls_out_channels).sigmoid()

            # After https://github.com/open-mmlab/mmdetection/pull/6268/,
            # this operation keeps fewer bboxes under the same `nms_pre`.
            # There is no difference in performance for most models. If you
            # find a slight drop in performance, you can set a larger
            # `nms_pre` than before.
            results = filter_scores_and_topk(
                scores, cfg.score_thr, nms_pre,
                dict(bbox_pred=bbox_pred, priors=priors))
            scores, labels, _, filtered_results = results

            bbox_pred = filtered_results['bbox_pred']
            priors = filtered_results['priors']

            bboxes = self.bbox_coder.decode(
                self.anchor_center(priors), bbox_pred, max_shape=img_shape)
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)
            mlvl_labels.append(labels)

        results = InstanceData()
        results.bboxes = torch.cat(mlvl_bboxes)
        results.scores = torch.cat(mlvl_scores)
        results.labels = torch.cat(mlvl_labels)

        return self._bbox_post_process(
            results=results,
            cfg=cfg,
            rescale=rescale,
            with_nms=with_nms,
            img_meta=img_meta)

    def get_targets(self,
                    anchor_list: List[Tensor],
                    valid_flag_list: List[Tensor],
                    batch_gt_instances: InstanceList,
                    batch_img_metas: List[dict],
                    batch_gt_instances_ignore: OptInstanceList = None,
                    unmap_outputs=True) -> tuple:
        """Get targets for GFL head.

        This method is almost the same as `AnchorHead.get_targets()`. Besides
        returning the targets as the parent method does, it also returns the
        anchors as the first element of the returned tuple.
        """
        num_imgs = len(batch_img_metas)
        assert len(anchor_list) == len(valid_flag_list) == num_imgs

        # anchor number of multi levels
        num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
        num_level_anchors_list = [num_level_anchors] * num_imgs

        # concat all level anchors and flags to a single tensor
        for i in range(num_imgs):
            assert len(anchor_list[i]) == len(valid_flag_list[i])
            anchor_list[i] = torch.cat(anchor_list[i])
            valid_flag_list[i] = torch.cat(valid_flag_list[i])

        # compute targets for each image
        if batch_gt_instances_ignore is None:
            batch_gt_instances_ignore = [None] * num_imgs
        (all_anchors, all_labels, all_label_weights, all_bbox_targets,
         all_bbox_weights, pos_inds_list, neg_inds_list,
         sampling_results_list) = multi_apply(
             self._get_targets_single,
             anchor_list,
             valid_flag_list,
             num_level_anchors_list,
             batch_gt_instances,
             batch_img_metas,
             batch_gt_instances_ignore,
             unmap_outputs=unmap_outputs)
        # Get `avg_factor` of all images, which calculate in `SamplingResult`.
        # When using sampling method, avg_factor is usually the sum of
        # positive and negative priors. When using `PseudoSampler`,
        # `avg_factor` is usually equal to the number of positive priors.
        avg_factor = sum(
            [results.avg_factor for results in sampling_results_list])
        # split targets to a list w.r.t. multiple levels
        anchors_list = images_to_levels(all_anchors, num_level_anchors)
        labels_list = images_to_levels(all_labels, num_level_anchors)
        label_weights_list = images_to_levels(all_label_weights,
                                              num_level_anchors)
        bbox_targets_list = images_to_levels(all_bbox_targets,
                                             num_level_anchors)
        bbox_weights_list = images_to_levels(all_bbox_weights,
                                             num_level_anchors)
        return (anchors_list, labels_list, label_weights_list,
                bbox_targets_list, bbox_weights_list, avg_factor)

    def _get_targets_single(self,
                            flat_anchors: Tensor,
                            valid_flags: Tensor,
                            num_level_anchors: List[int],
                            gt_instances: InstanceData,
                            img_meta: dict,
                            gt_instances_ignore: Optional[InstanceData] = None,
                            unmap_outputs: bool = True) -> tuple:
        """Compute regression, classification targets for anchors in a single
        image.

        Args:
            flat_anchors (Tensor): Multi-level anchors of the image, which are
                concatenated into a single tensor of shape (num_anchors, 4)
            valid_flags (Tensor): Multi level valid flags of the image,
                which are concatenated into a single tensor of
                    shape (num_anchors,).
            num_level_anchors (list[int]): Number of anchors of each scale
                level.
            gt_instances (:obj:`InstanceData`): Ground truth of instance
                annotations. It usually includes ``bboxes`` and ``labels``
                attributes.
            img_meta (dict): Meta information for current image.
            gt_instances_ignore (:obj:`InstanceData`, optional): Instances
                to be ignored during training. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.
            unmap_outputs (bool): Whether to map outputs back to the original
                set of anchors. Defaults to True.

        Returns:
            tuple: N is the number of total anchors in the image.

            - anchors (Tensor): All anchors in the image with shape (N, 4).
            - labels (Tensor): Labels of all anchors in the image with
              shape (N,).
            - label_weights (Tensor): Label weights of all anchor in the
              image with shape (N,).
            - bbox_targets (Tensor): BBox targets of all anchors in the
              image with shape (N, 4).
            - bbox_weights (Tensor): BBox weights of all anchors in the
              image with shape (N, 4).
            - pos_inds (Tensor): Indices of positive anchor with shape
              (num_pos,).
            - neg_inds (Tensor): Indices of negative anchor with shape
              (num_neg,).
            - sampling_result (:obj:`SamplingResult`): Sampling results.
        """
        inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
                                           img_meta['img_shape'][:2],
                                           self.train_cfg['allowed_border'])
        if not inside_flags.any():
            raise ValueError(
                'There is no valid anchor inside the image boundary. Please '
                'check the image size and anchor sizes, or set '
                '``allowed_border`` to -1 to skip the condition.')
        # assign gt and sample anchors
        anchors = flat_anchors[inside_flags, :]
        num_level_anchors_inside = self.get_num_level_anchors_inside(
            num_level_anchors, inside_flags)
        pred_instances = InstanceData(priors=anchors)
        assign_result = self.assigner.assign(
            pred_instances=pred_instances,
            num_level_priors=num_level_anchors_inside,
            gt_instances=gt_instances,
            gt_instances_ignore=gt_instances_ignore)

        sampling_result = self.sampler.sample(
            assign_result=assign_result,
            pred_instances=pred_instances,
            gt_instances=gt_instances)

        num_valid_anchors = anchors.shape[0]
        bbox_targets = torch.zeros_like(anchors)
        bbox_weights = torch.zeros_like(anchors)
        labels = anchors.new_full((num_valid_anchors, ),
                                  self.num_classes,
                                  dtype=torch.long)
        label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)

        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds
        if len(pos_inds) > 0:
            pos_bbox_targets = sampling_result.pos_gt_bboxes
            bbox_targets[pos_inds, :] = pos_bbox_targets
            bbox_weights[pos_inds, :] = 1.0

            labels[pos_inds] = sampling_result.pos_gt_labels
            if self.train_cfg['pos_weight'] <= 0:
                label_weights[pos_inds] = 1.0
            else:
                label_weights[pos_inds] = self.train_cfg['pos_weight']
        if len(neg_inds) > 0:
            label_weights[neg_inds] = 1.0

        # map up to original set of anchors
        if unmap_outputs:
            num_total_anchors = flat_anchors.size(0)
            anchors = unmap(anchors, num_total_anchors, inside_flags)
            labels = unmap(
                labels, num_total_anchors, inside_flags, fill=self.num_classes)
            label_weights = unmap(label_weights, num_total_anchors,
                                  inside_flags)
            bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags)
            bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags)

        return (anchors, labels, label_weights, bbox_targets, bbox_weights,
                pos_inds, neg_inds, sampling_result)

    def get_num_level_anchors_inside(self, num_level_anchors: List[int],
                                     inside_flags: Tensor) -> List[int]:
        """Get the number of valid anchors in every level."""

        split_inside_flags = torch.split(inside_flags, num_level_anchors)
        num_level_anchors_inside = [
            int(flags.sum()) for flags in split_inside_flags
        ]
        return num_level_anchors_inside