Spaces:
Runtime error
Runtime error
File size: 29,551 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Sequence, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, Scale
from mmengine.config import ConfigDict
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures.bbox import bbox_overlaps
from mmdet.utils import (ConfigType, InstanceList, MultiConfig, OptConfigType,
OptInstanceList, reduce_mean)
from ..task_modules.prior_generators import anchor_inside_flags
from ..task_modules.samplers import PseudoSampler
from ..utils import (filter_scores_and_topk, images_to_levels, multi_apply,
unmap)
from .anchor_head import AnchorHead
class Integral(nn.Module):
"""A fixed layer for calculating integral result from distribution.
This layer calculates the target location by :math: ``sum{P(y_i) * y_i}``,
P(y_i) denotes the softmax vector that represents the discrete distribution
y_i denotes the discrete set, usually {0, 1, 2, ..., reg_max}
Args:
reg_max (int): The maximal value of the discrete set. Defaults to 16.
You may want to reset it according to your new dataset or related
settings.
"""
def __init__(self, reg_max: int = 16) -> None:
super().__init__()
self.reg_max = reg_max
self.register_buffer('project',
torch.linspace(0, self.reg_max, self.reg_max + 1))
def forward(self, x: Tensor) -> Tensor:
"""Forward feature from the regression head to get integral result of
bounding box location.
Args:
x (Tensor): Features of the regression head, shape (N, 4*(n+1)),
n is self.reg_max.
Returns:
x (Tensor): Integral result of box locations, i.e., distance
offsets from the box center in four directions, shape (N, 4).
"""
x = F.softmax(x.reshape(-1, self.reg_max + 1), dim=1)
x = F.linear(x, self.project.type_as(x)).reshape(-1, 4)
return x
@MODELS.register_module()
class GFLHead(AnchorHead):
"""Generalized Focal Loss: Learning Qualified and Distributed Bounding
Boxes for Dense Object Detection.
GFL head structure is similar with ATSS, however GFL uses
1) joint representation for classification and localization quality, and
2) flexible General distribution for bounding box locations,
which are supervised by
Quality Focal Loss (QFL) and Distribution Focal Loss (DFL), respectively
https://arxiv.org/abs/2006.04388
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
stacked_convs (int): Number of conv layers in cls and reg tower.
Defaults to 4.
conv_cfg (:obj:`ConfigDict` or dict, optional): dictionary to construct
and config conv layer. Defaults to None.
norm_cfg (:obj:`ConfigDict` or dict): dictionary to construct and
config norm layer. Default: dict(type='GN', num_groups=32,
requires_grad=True).
loss_qfl (:obj:`ConfigDict` or dict): Config of Quality Focal Loss
(QFL).
bbox_coder (:obj:`ConfigDict` or dict): Config of bbox coder. Defaults
to 'DistancePointBBoxCoder'.
reg_max (int): Max value of integral set :math: ``{0, ..., reg_max}``
in QFL setting. Defaults to 16.
init_cfg (:obj:`ConfigDict` or dict or list[dict] or
list[:obj:`ConfigDict`]): Initialization config dict.
Example:
>>> self = GFLHead(11, 7)
>>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]]
>>> cls_quality_score, bbox_pred = self.forward(feats)
>>> assert len(cls_quality_score) == len(self.scales)
"""
def __init__(self,
num_classes: int,
in_channels: int,
stacked_convs: int = 4,
conv_cfg: OptConfigType = None,
norm_cfg: ConfigType = dict(
type='GN', num_groups=32, requires_grad=True),
loss_dfl: ConfigType = dict(
type='DistributionFocalLoss', loss_weight=0.25),
bbox_coder: ConfigType = dict(type='DistancePointBBoxCoder'),
reg_max: int = 16,
init_cfg: MultiConfig = dict(
type='Normal',
layer='Conv2d',
std=0.01,
override=dict(
type='Normal',
name='gfl_cls',
std=0.01,
bias_prob=0.01)),
**kwargs) -> None:
self.stacked_convs = stacked_convs
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.reg_max = reg_max
super().__init__(
num_classes=num_classes,
in_channels=in_channels,
bbox_coder=bbox_coder,
init_cfg=init_cfg,
**kwargs)
if self.train_cfg:
self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
if self.train_cfg.get('sampler', None) is not None:
self.sampler = TASK_UTILS.build(
self.train_cfg['sampler'], default_args=dict(context=self))
else:
self.sampler = PseudoSampler(context=self)
self.integral = Integral(self.reg_max)
self.loss_dfl = MODELS.build(loss_dfl)
def _init_layers(self) -> None:
"""Initialize layers of the head."""
self.relu = nn.ReLU()
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
assert self.num_anchors == 1, 'anchor free version'
self.gfl_cls = nn.Conv2d(
self.feat_channels, self.cls_out_channels, 3, padding=1)
self.gfl_reg = nn.Conv2d(
self.feat_channels, 4 * (self.reg_max + 1), 3, padding=1)
self.scales = nn.ModuleList(
[Scale(1.0) for _ in self.prior_generator.strides])
def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor]]:
"""Forward features from the upstream network.
Args:
x (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple: Usually a tuple of classification scores and bbox prediction
- cls_scores (list[Tensor]): Classification and quality (IoU)
joint scores for all scale levels, each is a 4D-tensor,
the channel number is num_classes.
- bbox_preds (list[Tensor]): Box distribution logits for all
scale levels, each is a 4D-tensor, the channel number is
4*(n+1), n is max value of integral set.
"""
return multi_apply(self.forward_single, x, self.scales)
def forward_single(self, x: Tensor, scale: Scale) -> Sequence[Tensor]:
"""Forward feature of a single scale level.
Args:
x (Tensor): Features of a single scale level.
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize
the bbox prediction.
Returns:
tuple:
- cls_score (Tensor): Cls and quality joint scores for a single
scale level the channel number is num_classes.
- bbox_pred (Tensor): Box distribution logits for a single scale
level, the channel number is 4*(n+1), n is max value of
integral set.
"""
cls_feat = x
reg_feat = x
for cls_conv in self.cls_convs:
cls_feat = cls_conv(cls_feat)
for reg_conv in self.reg_convs:
reg_feat = reg_conv(reg_feat)
cls_score = self.gfl_cls(cls_feat)
bbox_pred = scale(self.gfl_reg(reg_feat)).float()
return cls_score, bbox_pred
def anchor_center(self, anchors: Tensor) -> Tensor:
"""Get anchor centers from anchors.
Args:
anchors (Tensor): Anchor list with shape (N, 4), ``xyxy`` format.
Returns:
Tensor: Anchor centers with shape (N, 2), ``xy`` format.
"""
anchors_cx = (anchors[..., 2] + anchors[..., 0]) / 2
anchors_cy = (anchors[..., 3] + anchors[..., 1]) / 2
return torch.stack([anchors_cx, anchors_cy], dim=-1)
def loss_by_feat_single(self, anchors: Tensor, cls_score: Tensor,
bbox_pred: Tensor, labels: Tensor,
label_weights: Tensor, bbox_targets: Tensor,
stride: Tuple[int], avg_factor: int) -> dict:
"""Calculate the loss of a single scale level based on the features
extracted by the detection head.
Args:
anchors (Tensor): Box reference for each scale level with shape
(N, num_total_anchors, 4).
cls_score (Tensor): Cls and quality joint scores for each scale
level has shape (N, num_classes, H, W).
bbox_pred (Tensor): Box distribution logits for each scale
level with shape (N, 4*(n+1), H, W), n is max value of integral
set.
labels (Tensor): Labels of each anchors with shape
(N, num_total_anchors).
label_weights (Tensor): Label weights of each anchor with shape
(N, num_total_anchors)
bbox_targets (Tensor): BBox regression targets of each anchor
weight shape (N, num_total_anchors, 4).
stride (Tuple[int]): Stride in this scale level.
avg_factor (int): Average factor that is used to average
the loss. When using sampling method, avg_factor is usually
the sum of positive and negative priors. When using
`PseudoSampler`, `avg_factor` is usually equal to the number
of positive priors.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
assert stride[0] == stride[1], 'h stride is not equal to w stride!'
anchors = anchors.reshape(-1, 4)
cls_score = cls_score.permute(0, 2, 3,
1).reshape(-1, self.cls_out_channels)
bbox_pred = bbox_pred.permute(0, 2, 3,
1).reshape(-1, 4 * (self.reg_max + 1))
bbox_targets = bbox_targets.reshape(-1, 4)
labels = labels.reshape(-1)
label_weights = label_weights.reshape(-1)
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes
bg_class_ind = self.num_classes
pos_inds = ((labels >= 0)
& (labels < bg_class_ind)).nonzero().squeeze(1)
score = label_weights.new_zeros(labels.shape)
if len(pos_inds) > 0:
pos_bbox_targets = bbox_targets[pos_inds]
pos_bbox_pred = bbox_pred[pos_inds]
pos_anchors = anchors[pos_inds]
pos_anchor_centers = self.anchor_center(pos_anchors) / stride[0]
weight_targets = cls_score.detach().sigmoid()
weight_targets = weight_targets.max(dim=1)[0][pos_inds]
pos_bbox_pred_corners = self.integral(pos_bbox_pred)
pos_decode_bbox_pred = self.bbox_coder.decode(
pos_anchor_centers, pos_bbox_pred_corners)
pos_decode_bbox_targets = pos_bbox_targets / stride[0]
score[pos_inds] = bbox_overlaps(
pos_decode_bbox_pred.detach(),
pos_decode_bbox_targets,
is_aligned=True)
pred_corners = pos_bbox_pred.reshape(-1, self.reg_max + 1)
target_corners = self.bbox_coder.encode(pos_anchor_centers,
pos_decode_bbox_targets,
self.reg_max).reshape(-1)
# regression loss
loss_bbox = self.loss_bbox(
pos_decode_bbox_pred,
pos_decode_bbox_targets,
weight=weight_targets,
avg_factor=1.0)
# dfl loss
loss_dfl = self.loss_dfl(
pred_corners,
target_corners,
weight=weight_targets[:, None].expand(-1, 4).reshape(-1),
avg_factor=4.0)
else:
loss_bbox = bbox_pred.sum() * 0
loss_dfl = bbox_pred.sum() * 0
weight_targets = bbox_pred.new_tensor(0)
# cls (qfl) loss
loss_cls = self.loss_cls(
cls_score, (labels, score),
weight=label_weights,
avg_factor=avg_factor)
return loss_cls, loss_bbox, loss_dfl, weight_targets.sum()
def loss_by_feat(
self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None) -> dict:
"""Calculate the loss based on the features extracted by the detection
head.
Args:
cls_scores (list[Tensor]): Cls and quality scores for each scale
level has shape (N, num_classes, H, W).
bbox_preds (list[Tensor]): Box distribution logits for each scale
level with shape (N, 4*(n+1), H, W), n is max value of integral
set.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.prior_generator.num_levels
device = cls_scores[0].device
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, batch_img_metas, device=device)
cls_reg_targets = self.get_targets(
anchor_list,
valid_flag_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore=batch_gt_instances_ignore)
(anchor_list, labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, avg_factor) = cls_reg_targets
avg_factor = reduce_mean(
torch.tensor(avg_factor, dtype=torch.float, device=device)).item()
losses_cls, losses_bbox, losses_dfl,\
avg_factor = multi_apply(
self.loss_by_feat_single,
anchor_list,
cls_scores,
bbox_preds,
labels_list,
label_weights_list,
bbox_targets_list,
self.prior_generator.strides,
avg_factor=avg_factor)
avg_factor = sum(avg_factor)
avg_factor = reduce_mean(avg_factor).clamp_(min=1).item()
losses_bbox = list(map(lambda x: x / avg_factor, losses_bbox))
losses_dfl = list(map(lambda x: x / avg_factor, losses_dfl))
return dict(
loss_cls=losses_cls, loss_bbox=losses_bbox, loss_dfl=losses_dfl)
def _predict_by_feat_single(self,
cls_score_list: List[Tensor],
bbox_pred_list: List[Tensor],
score_factor_list: List[Tensor],
mlvl_priors: List[Tensor],
img_meta: dict,
cfg: ConfigDict,
rescale: bool = False,
with_nms: bool = True) -> InstanceData:
"""Transform a single image's features extracted from the head into
bbox results.
Args:
cls_score_list (list[Tensor]): Box scores from all scale
levels of a single image, each item has shape
(num_priors * num_classes, H, W).
bbox_pred_list (list[Tensor]): Box energies / deltas from
all scale levels of a single image, each item has shape
(num_priors * 4, H, W).
score_factor_list (list[Tensor]): Score factor from all scale
levels of a single image. GFL head does not need this value.
mlvl_priors (list[Tensor]): Each element in the list is
the priors of a single level in feature pyramid, has shape
(num_priors, 4).
img_meta (dict): Image meta info.
cfg (:obj: `ConfigDict`): Test / postprocessing configuration,
if None, test_cfg would be used.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
with_nms (bool): If True, do nms before return boxes.
Defaults to True.
Returns:
tuple[Tensor]: Results of detected bboxes and labels. If with_nms
is False and mlvl_score_factor is None, return mlvl_bboxes and
mlvl_scores, else return mlvl_bboxes, mlvl_scores and
mlvl_score_factor. Usually with_nms is False is used for aug
test. If with_nms is True, then return the following format
- det_bboxes (Tensor): Predicted bboxes with shape
[num_bboxes, 5], where the first 4 columns are bounding
box positions (tl_x, tl_y, br_x, br_y) and the 5-th
column are scores between 0 and 1.
- det_labels (Tensor): Predicted labels of the corresponding
box with shape [num_bboxes].
"""
cfg = self.test_cfg if cfg is None else cfg
img_shape = img_meta['img_shape']
nms_pre = cfg.get('nms_pre', -1)
mlvl_bboxes = []
mlvl_scores = []
mlvl_labels = []
for level_idx, (cls_score, bbox_pred, stride, priors) in enumerate(
zip(cls_score_list, bbox_pred_list,
self.prior_generator.strides, mlvl_priors)):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
assert stride[0] == stride[1]
bbox_pred = bbox_pred.permute(1, 2, 0)
bbox_pred = self.integral(bbox_pred) * stride[0]
scores = cls_score.permute(1, 2, 0).reshape(
-1, self.cls_out_channels).sigmoid()
# After https://github.com/open-mmlab/mmdetection/pull/6268/,
# this operation keeps fewer bboxes under the same `nms_pre`.
# There is no difference in performance for most models. If you
# find a slight drop in performance, you can set a larger
# `nms_pre` than before.
results = filter_scores_and_topk(
scores, cfg.score_thr, nms_pre,
dict(bbox_pred=bbox_pred, priors=priors))
scores, labels, _, filtered_results = results
bbox_pred = filtered_results['bbox_pred']
priors = filtered_results['priors']
bboxes = self.bbox_coder.decode(
self.anchor_center(priors), bbox_pred, max_shape=img_shape)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_labels.append(labels)
results = InstanceData()
results.bboxes = torch.cat(mlvl_bboxes)
results.scores = torch.cat(mlvl_scores)
results.labels = torch.cat(mlvl_labels)
return self._bbox_post_process(
results=results,
cfg=cfg,
rescale=rescale,
with_nms=with_nms,
img_meta=img_meta)
def get_targets(self,
anchor_list: List[Tensor],
valid_flag_list: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None,
unmap_outputs=True) -> tuple:
"""Get targets for GFL head.
This method is almost the same as `AnchorHead.get_targets()`. Besides
returning the targets as the parent method does, it also returns the
anchors as the first element of the returned tuple.
"""
num_imgs = len(batch_img_metas)
assert len(anchor_list) == len(valid_flag_list) == num_imgs
# anchor number of multi levels
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
num_level_anchors_list = [num_level_anchors] * num_imgs
# concat all level anchors and flags to a single tensor
for i in range(num_imgs):
assert len(anchor_list[i]) == len(valid_flag_list[i])
anchor_list[i] = torch.cat(anchor_list[i])
valid_flag_list[i] = torch.cat(valid_flag_list[i])
# compute targets for each image
if batch_gt_instances_ignore is None:
batch_gt_instances_ignore = [None] * num_imgs
(all_anchors, all_labels, all_label_weights, all_bbox_targets,
all_bbox_weights, pos_inds_list, neg_inds_list,
sampling_results_list) = multi_apply(
self._get_targets_single,
anchor_list,
valid_flag_list,
num_level_anchors_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore,
unmap_outputs=unmap_outputs)
# Get `avg_factor` of all images, which calculate in `SamplingResult`.
# When using sampling method, avg_factor is usually the sum of
# positive and negative priors. When using `PseudoSampler`,
# `avg_factor` is usually equal to the number of positive priors.
avg_factor = sum(
[results.avg_factor for results in sampling_results_list])
# split targets to a list w.r.t. multiple levels
anchors_list = images_to_levels(all_anchors, num_level_anchors)
labels_list = images_to_levels(all_labels, num_level_anchors)
label_weights_list = images_to_levels(all_label_weights,
num_level_anchors)
bbox_targets_list = images_to_levels(all_bbox_targets,
num_level_anchors)
bbox_weights_list = images_to_levels(all_bbox_weights,
num_level_anchors)
return (anchors_list, labels_list, label_weights_list,
bbox_targets_list, bbox_weights_list, avg_factor)
def _get_targets_single(self,
flat_anchors: Tensor,
valid_flags: Tensor,
num_level_anchors: List[int],
gt_instances: InstanceData,
img_meta: dict,
gt_instances_ignore: Optional[InstanceData] = None,
unmap_outputs: bool = True) -> tuple:
"""Compute regression, classification targets for anchors in a single
image.
Args:
flat_anchors (Tensor): Multi-level anchors of the image, which are
concatenated into a single tensor of shape (num_anchors, 4)
valid_flags (Tensor): Multi level valid flags of the image,
which are concatenated into a single tensor of
shape (num_anchors,).
num_level_anchors (list[int]): Number of anchors of each scale
level.
gt_instances (:obj:`InstanceData`): Ground truth of instance
annotations. It usually includes ``bboxes`` and ``labels``
attributes.
img_meta (dict): Meta information for current image.
gt_instances_ignore (:obj:`InstanceData`, optional): Instances
to be ignored during training. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors. Defaults to True.
Returns:
tuple: N is the number of total anchors in the image.
- anchors (Tensor): All anchors in the image with shape (N, 4).
- labels (Tensor): Labels of all anchors in the image with
shape (N,).
- label_weights (Tensor): Label weights of all anchor in the
image with shape (N,).
- bbox_targets (Tensor): BBox targets of all anchors in the
image with shape (N, 4).
- bbox_weights (Tensor): BBox weights of all anchors in the
image with shape (N, 4).
- pos_inds (Tensor): Indices of positive anchor with shape
(num_pos,).
- neg_inds (Tensor): Indices of negative anchor with shape
(num_neg,).
- sampling_result (:obj:`SamplingResult`): Sampling results.
"""
inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
img_meta['img_shape'][:2],
self.train_cfg['allowed_border'])
if not inside_flags.any():
raise ValueError(
'There is no valid anchor inside the image boundary. Please '
'check the image size and anchor sizes, or set '
'``allowed_border`` to -1 to skip the condition.')
# assign gt and sample anchors
anchors = flat_anchors[inside_flags, :]
num_level_anchors_inside = self.get_num_level_anchors_inside(
num_level_anchors, inside_flags)
pred_instances = InstanceData(priors=anchors)
assign_result = self.assigner.assign(
pred_instances=pred_instances,
num_level_priors=num_level_anchors_inside,
gt_instances=gt_instances,
gt_instances_ignore=gt_instances_ignore)
sampling_result = self.sampler.sample(
assign_result=assign_result,
pred_instances=pred_instances,
gt_instances=gt_instances)
num_valid_anchors = anchors.shape[0]
bbox_targets = torch.zeros_like(anchors)
bbox_weights = torch.zeros_like(anchors)
labels = anchors.new_full((num_valid_anchors, ),
self.num_classes,
dtype=torch.long)
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
if len(pos_inds) > 0:
pos_bbox_targets = sampling_result.pos_gt_bboxes
bbox_targets[pos_inds, :] = pos_bbox_targets
bbox_weights[pos_inds, :] = 1.0
labels[pos_inds] = sampling_result.pos_gt_labels
if self.train_cfg['pos_weight'] <= 0:
label_weights[pos_inds] = 1.0
else:
label_weights[pos_inds] = self.train_cfg['pos_weight']
if len(neg_inds) > 0:
label_weights[neg_inds] = 1.0
# map up to original set of anchors
if unmap_outputs:
num_total_anchors = flat_anchors.size(0)
anchors = unmap(anchors, num_total_anchors, inside_flags)
labels = unmap(
labels, num_total_anchors, inside_flags, fill=self.num_classes)
label_weights = unmap(label_weights, num_total_anchors,
inside_flags)
bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags)
bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags)
return (anchors, labels, label_weights, bbox_targets, bbox_weights,
pos_inds, neg_inds, sampling_result)
def get_num_level_anchors_inside(self, num_level_anchors: List[int],
inside_flags: Tensor) -> List[int]:
"""Get the number of valid anchors in every level."""
split_inside_flags = torch.split(inside_flags, num_level_anchors)
num_level_anchors_inside = [
int(flags.sum()) for flags in split_inside_flags
]
return num_level_anchors_inside
|