File size: 53,738 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import Dict, List, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, Scale
from mmengine.config import ConfigDict
from mmengine.model import BaseModule, kaiming_init
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.registry import MODELS
from mmdet.structures.bbox import cat_boxes
from mmdet.utils import (ConfigType, InstanceList, MultiConfig, OptConfigType,
                         OptInstanceList, reduce_mean)
from ..task_modules.prior_generators import MlvlPointGenerator
from ..utils import (aligned_bilinear, filter_scores_and_topk, multi_apply,
                     relative_coordinate_maps, select_single_mlvl)
from ..utils.misc import empty_instances
from .base_mask_head import BaseMaskHead
from .fcos_head import FCOSHead

INF = 1e8


@MODELS.register_module()
class CondInstBboxHead(FCOSHead):
    """CondInst box head used in https://arxiv.org/abs/1904.02689.

    Note that CondInst Bbox Head is a extension of FCOS head.
    Two differences are described as follows:

    1. CondInst box head predicts a set of params for each instance.
    2. CondInst box head return the pos_gt_inds and pos_inds.

    Args:
        num_params (int): Number of params for instance segmentation.
    """

    def __init__(self, *args, num_params: int = 169, **kwargs) -> None:
        self.num_params = num_params
        super().__init__(*args, **kwargs)

    def _init_layers(self) -> None:
        """Initialize layers of the head."""
        super()._init_layers()
        self.controller = nn.Conv2d(
            self.feat_channels, self.num_params, 3, padding=1)

    def forward_single(self, x: Tensor, scale: Scale,
                       stride: int) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
        """Forward features of a single scale level.

        Args:
            x (Tensor): FPN feature maps of the specified stride.
            scale (:obj:`mmcv.cnn.Scale`): Learnable scale module to resize
                the bbox prediction.
            stride (int): The corresponding stride for feature maps, only
                used to normalize the bbox prediction when self.norm_on_bbox
                is True.

        Returns:
            tuple: scores for each class, bbox predictions, centerness
            predictions and param predictions of input feature maps.
        """
        cls_score, bbox_pred, cls_feat, reg_feat = \
            super(FCOSHead, self).forward_single(x)
        if self.centerness_on_reg:
            centerness = self.conv_centerness(reg_feat)
        else:
            centerness = self.conv_centerness(cls_feat)
        # scale the bbox_pred of different level
        # float to avoid overflow when enabling FP16
        bbox_pred = scale(bbox_pred).float()
        if self.norm_on_bbox:
            # bbox_pred needed for gradient computation has been modified
            # by F.relu(bbox_pred) when run with PyTorch 1.10. So replace
            # F.relu(bbox_pred) with bbox_pred.clamp(min=0)
            bbox_pred = bbox_pred.clamp(min=0)
            if not self.training:
                bbox_pred *= stride
        else:
            bbox_pred = bbox_pred.exp()
        param_pred = self.controller(reg_feat)
        return cls_score, bbox_pred, centerness, param_pred

    def loss_by_feat(
        self,
        cls_scores: List[Tensor],
        bbox_preds: List[Tensor],
        centernesses: List[Tensor],
        param_preds: List[Tensor],
        batch_gt_instances: InstanceList,
        batch_img_metas: List[dict],
        batch_gt_instances_ignore: OptInstanceList = None
    ) -> Dict[str, Tensor]:
        """Calculate the loss based on the features extracted by the detection
        head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level,
                each is a 4D-tensor, the channel number is
                num_points * num_classes.
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level, each is a 4D-tensor, the channel number is
                num_points * 4.
            centernesses (list[Tensor]): centerness for each scale level, each
                is a 4D-tensor, the channel number is num_points * 1.
            param_preds (List[Tensor]): param_pred for each scale level, each
                is a 4D-tensor, the channel number is num_params.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance.  It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        assert len(cls_scores) == len(bbox_preds) == len(centernesses)
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        # Need stride for rel coord compute
        all_level_points_strides = self.prior_generator.grid_priors(
            featmap_sizes,
            dtype=bbox_preds[0].dtype,
            device=bbox_preds[0].device,
            with_stride=True)
        all_level_points = [i[:, :2] for i in all_level_points_strides]
        all_level_strides = [i[:, 2] for i in all_level_points_strides]
        labels, bbox_targets, pos_inds_list, pos_gt_inds_list = \
            self.get_targets(all_level_points, batch_gt_instances)

        num_imgs = cls_scores[0].size(0)
        # flatten cls_scores, bbox_preds and centerness
        flatten_cls_scores = [
            cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels)
            for cls_score in cls_scores
        ]
        flatten_bbox_preds = [
            bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
            for bbox_pred in bbox_preds
        ]
        flatten_centerness = [
            centerness.permute(0, 2, 3, 1).reshape(-1)
            for centerness in centernesses
        ]
        flatten_cls_scores = torch.cat(flatten_cls_scores)
        flatten_bbox_preds = torch.cat(flatten_bbox_preds)
        flatten_centerness = torch.cat(flatten_centerness)
        flatten_labels = torch.cat(labels)
        flatten_bbox_targets = torch.cat(bbox_targets)
        # repeat points to align with bbox_preds
        flatten_points = torch.cat(
            [points.repeat(num_imgs, 1) for points in all_level_points])

        # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
        bg_class_ind = self.num_classes
        pos_inds = ((flatten_labels >= 0)
                    & (flatten_labels < bg_class_ind)).nonzero().reshape(-1)
        num_pos = torch.tensor(
            len(pos_inds), dtype=torch.float, device=bbox_preds[0].device)
        num_pos = max(reduce_mean(num_pos), 1.0)
        loss_cls = self.loss_cls(
            flatten_cls_scores, flatten_labels, avg_factor=num_pos)

        pos_bbox_preds = flatten_bbox_preds[pos_inds]
        pos_centerness = flatten_centerness[pos_inds]
        pos_bbox_targets = flatten_bbox_targets[pos_inds]
        pos_centerness_targets = self.centerness_target(pos_bbox_targets)
        # centerness weighted iou loss
        centerness_denorm = max(
            reduce_mean(pos_centerness_targets.sum().detach()), 1e-6)

        if len(pos_inds) > 0:
            pos_points = flatten_points[pos_inds]
            pos_decoded_bbox_preds = self.bbox_coder.decode(
                pos_points, pos_bbox_preds)
            pos_decoded_target_preds = self.bbox_coder.decode(
                pos_points, pos_bbox_targets)
            loss_bbox = self.loss_bbox(
                pos_decoded_bbox_preds,
                pos_decoded_target_preds,
                weight=pos_centerness_targets,
                avg_factor=centerness_denorm)
            loss_centerness = self.loss_centerness(
                pos_centerness, pos_centerness_targets, avg_factor=num_pos)
        else:
            loss_bbox = pos_bbox_preds.sum()
            loss_centerness = pos_centerness.sum()

        self._raw_positive_infos.update(cls_scores=cls_scores)
        self._raw_positive_infos.update(centernesses=centernesses)
        self._raw_positive_infos.update(param_preds=param_preds)
        self._raw_positive_infos.update(all_level_points=all_level_points)
        self._raw_positive_infos.update(all_level_strides=all_level_strides)
        self._raw_positive_infos.update(pos_gt_inds_list=pos_gt_inds_list)
        self._raw_positive_infos.update(pos_inds_list=pos_inds_list)

        return dict(
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            loss_centerness=loss_centerness)

    def get_targets(
        self, points: List[Tensor], batch_gt_instances: InstanceList
    ) -> Tuple[List[Tensor], List[Tensor], List[Tensor], List[Tensor]]:
        """Compute regression, classification and centerness targets for points
        in multiple images.

        Args:
            points (list[Tensor]): Points of each fpn level, each has shape
                (num_points, 2).
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance.  It usually includes ``bboxes`` and ``labels``
                attributes.

        Returns:
            tuple: Targets of each level.

            - concat_lvl_labels (list[Tensor]): Labels of each level.
            - concat_lvl_bbox_targets (list[Tensor]): BBox targets of each \
            level.
            - pos_inds_list (list[Tensor]): pos_inds of each image.
            - pos_gt_inds_list (List[Tensor]): pos_gt_inds of each image.
        """
        assert len(points) == len(self.regress_ranges)
        num_levels = len(points)
        # expand regress ranges to align with points
        expanded_regress_ranges = [
            points[i].new_tensor(self.regress_ranges[i])[None].expand_as(
                points[i]) for i in range(num_levels)
        ]
        # concat all levels points and regress ranges
        concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0)
        concat_points = torch.cat(points, dim=0)

        # the number of points per img, per lvl
        num_points = [center.size(0) for center in points]

        # get labels and bbox_targets of each image
        labels_list, bbox_targets_list, pos_inds_list, pos_gt_inds_list = \
            multi_apply(
                self._get_targets_single,
                batch_gt_instances,
                points=concat_points,
                regress_ranges=concat_regress_ranges,
                num_points_per_lvl=num_points)

        # split to per img, per level
        labels_list = [labels.split(num_points, 0) for labels in labels_list]
        bbox_targets_list = [
            bbox_targets.split(num_points, 0)
            for bbox_targets in bbox_targets_list
        ]

        # concat per level image
        concat_lvl_labels = []
        concat_lvl_bbox_targets = []
        for i in range(num_levels):
            concat_lvl_labels.append(
                torch.cat([labels[i] for labels in labels_list]))
            bbox_targets = torch.cat(
                [bbox_targets[i] for bbox_targets in bbox_targets_list])
            if self.norm_on_bbox:
                bbox_targets = bbox_targets / self.strides[i]
            concat_lvl_bbox_targets.append(bbox_targets)
        return (concat_lvl_labels, concat_lvl_bbox_targets, pos_inds_list,
                pos_gt_inds_list)

    def _get_targets_single(
        self, gt_instances: InstanceData, points: Tensor,
        regress_ranges: Tensor, num_points_per_lvl: List[int]
    ) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
        """Compute regression and classification targets for a single image."""
        num_points = points.size(0)
        num_gts = len(gt_instances)
        gt_bboxes = gt_instances.bboxes
        gt_labels = gt_instances.labels
        gt_masks = gt_instances.get('masks', None)

        if num_gts == 0:
            return gt_labels.new_full((num_points,), self.num_classes), \
                   gt_bboxes.new_zeros((num_points, 4)), \
                   gt_bboxes.new_zeros((0,), dtype=torch.int64), \
                   gt_bboxes.new_zeros((0,), dtype=torch.int64)

        areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * (
            gt_bboxes[:, 3] - gt_bboxes[:, 1])
        # TODO: figure out why these two are different
        # areas = areas[None].expand(num_points, num_gts)
        areas = areas[None].repeat(num_points, 1)
        regress_ranges = regress_ranges[:, None, :].expand(
            num_points, num_gts, 2)
        gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4)
        xs, ys = points[:, 0], points[:, 1]
        xs = xs[:, None].expand(num_points, num_gts)
        ys = ys[:, None].expand(num_points, num_gts)

        left = xs - gt_bboxes[..., 0]
        right = gt_bboxes[..., 2] - xs
        top = ys - gt_bboxes[..., 1]
        bottom = gt_bboxes[..., 3] - ys
        bbox_targets = torch.stack((left, top, right, bottom), -1)

        if self.center_sampling:
            # condition1: inside a `center bbox`
            radius = self.center_sample_radius
            # if gt_mask not None, use gt mask's centroid to determine
            # the center region rather than gt_bbox center
            if gt_masks is None:
                center_xs = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) / 2
                center_ys = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) / 2
            else:
                h, w = gt_masks.height, gt_masks.width
                masks = gt_masks.to_tensor(
                    dtype=torch.bool, device=gt_bboxes.device)
                yys = torch.arange(
                    0, h, dtype=torch.float32, device=masks.device)
                xxs = torch.arange(
                    0, w, dtype=torch.float32, device=masks.device)
                # m00/m10/m01 represent the moments of a contour
                # centroid is computed by m00/m10 and m00/m01
                m00 = masks.sum(dim=-1).sum(dim=-1).clamp(min=1e-6)
                m10 = (masks * xxs).sum(dim=-1).sum(dim=-1)
                m01 = (masks * yys[:, None]).sum(dim=-1).sum(dim=-1)
                center_xs = m10 / m00
                center_ys = m01 / m00

                center_xs = center_xs[None].expand(num_points, num_gts)
                center_ys = center_ys[None].expand(num_points, num_gts)
            center_gts = torch.zeros_like(gt_bboxes)
            stride = center_xs.new_zeros(center_xs.shape)

            # project the points on current lvl back to the `original` sizes
            lvl_begin = 0
            for lvl_idx, num_points_lvl in enumerate(num_points_per_lvl):
                lvl_end = lvl_begin + num_points_lvl
                stride[lvl_begin:lvl_end] = self.strides[lvl_idx] * radius
                lvl_begin = lvl_end

            x_mins = center_xs - stride
            y_mins = center_ys - stride
            x_maxs = center_xs + stride
            y_maxs = center_ys + stride
            center_gts[..., 0] = torch.where(x_mins > gt_bboxes[..., 0],
                                             x_mins, gt_bboxes[..., 0])
            center_gts[..., 1] = torch.where(y_mins > gt_bboxes[..., 1],
                                             y_mins, gt_bboxes[..., 1])
            center_gts[..., 2] = torch.where(x_maxs > gt_bboxes[..., 2],
                                             gt_bboxes[..., 2], x_maxs)
            center_gts[..., 3] = torch.where(y_maxs > gt_bboxes[..., 3],
                                             gt_bboxes[..., 3], y_maxs)

            cb_dist_left = xs - center_gts[..., 0]
            cb_dist_right = center_gts[..., 2] - xs
            cb_dist_top = ys - center_gts[..., 1]
            cb_dist_bottom = center_gts[..., 3] - ys
            center_bbox = torch.stack(
                (cb_dist_left, cb_dist_top, cb_dist_right, cb_dist_bottom), -1)
            inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0
        else:
            # condition1: inside a gt bbox
            inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0

        # condition2: limit the regression range for each location
        max_regress_distance = bbox_targets.max(-1)[0]
        inside_regress_range = (
            (max_regress_distance >= regress_ranges[..., 0])
            & (max_regress_distance <= regress_ranges[..., 1]))

        # if there are still more than one objects for a location,
        # we choose the one with minimal area
        areas[inside_gt_bbox_mask == 0] = INF
        areas[inside_regress_range == 0] = INF
        min_area, min_area_inds = areas.min(dim=1)

        labels = gt_labels[min_area_inds]
        labels[min_area == INF] = self.num_classes  # set as BG
        bbox_targets = bbox_targets[range(num_points), min_area_inds]

        # return pos_inds & pos_gt_inds
        bg_class_ind = self.num_classes
        pos_inds = ((labels >= 0)
                    & (labels < bg_class_ind)).nonzero().reshape(-1)
        pos_gt_inds = min_area_inds[labels < self.num_classes]
        return labels, bbox_targets, pos_inds, pos_gt_inds

    def get_positive_infos(self) -> InstanceList:
        """Get positive information from sampling results.

        Returns:
            list[:obj:`InstanceData`]: Positive information of each image,
            usually including positive bboxes, positive labels, positive
            priors, etc.
        """
        assert len(self._raw_positive_infos) > 0

        pos_gt_inds_list = self._raw_positive_infos['pos_gt_inds_list']
        pos_inds_list = self._raw_positive_infos['pos_inds_list']
        num_imgs = len(pos_gt_inds_list)

        cls_score_list = []
        centerness_list = []
        param_pred_list = []
        point_list = []
        stride_list = []
        for cls_score_per_lvl, centerness_per_lvl, param_pred_per_lvl,\
            point_per_lvl, stride_per_lvl in \
            zip(self._raw_positive_infos['cls_scores'],
                self._raw_positive_infos['centernesses'],
                self._raw_positive_infos['param_preds'],
                self._raw_positive_infos['all_level_points'],
                self._raw_positive_infos['all_level_strides']):
            cls_score_per_lvl = \
                cls_score_per_lvl.permute(
                    0, 2, 3, 1).reshape(num_imgs, -1, self.num_classes)
            centerness_per_lvl = \
                centerness_per_lvl.permute(
                    0, 2, 3, 1).reshape(num_imgs, -1, 1)
            param_pred_per_lvl = \
                param_pred_per_lvl.permute(
                    0, 2, 3, 1).reshape(num_imgs, -1, self.num_params)
            point_per_lvl = point_per_lvl.unsqueeze(0).repeat(num_imgs, 1, 1)
            stride_per_lvl = stride_per_lvl.unsqueeze(0).repeat(num_imgs, 1)

            cls_score_list.append(cls_score_per_lvl)
            centerness_list.append(centerness_per_lvl)
            param_pred_list.append(param_pred_per_lvl)
            point_list.append(point_per_lvl)
            stride_list.append(stride_per_lvl)
        cls_scores = torch.cat(cls_score_list, dim=1)
        centernesses = torch.cat(centerness_list, dim=1)
        param_preds = torch.cat(param_pred_list, dim=1)
        all_points = torch.cat(point_list, dim=1)
        all_strides = torch.cat(stride_list, dim=1)

        positive_infos = []
        for i, (pos_gt_inds,
                pos_inds) in enumerate(zip(pos_gt_inds_list, pos_inds_list)):
            pos_info = InstanceData()
            pos_info.points = all_points[i][pos_inds]
            pos_info.strides = all_strides[i][pos_inds]
            pos_info.scores = cls_scores[i][pos_inds]
            pos_info.centernesses = centernesses[i][pos_inds]
            pos_info.param_preds = param_preds[i][pos_inds]
            pos_info.pos_assigned_gt_inds = pos_gt_inds
            pos_info.pos_inds = pos_inds
            positive_infos.append(pos_info)
        return positive_infos

    def predict_by_feat(self,
                        cls_scores: List[Tensor],
                        bbox_preds: List[Tensor],
                        score_factors: Optional[List[Tensor]] = None,
                        param_preds: Optional[List[Tensor]] = None,
                        batch_img_metas: Optional[List[dict]] = None,
                        cfg: Optional[ConfigDict] = None,
                        rescale: bool = False,
                        with_nms: bool = True) -> InstanceList:
        """Transform a batch of output features extracted from the head into
        bbox results.

        Note: When score_factors is not None, the cls_scores are
        usually multiplied by it then obtain the real score used in NMS,
        such as CenterNess in FCOS, IoU branch in ATSS.

        Args:
            cls_scores (list[Tensor]): Classification scores for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * 4, H, W).
            score_factors (list[Tensor], optional): Score factor for
                all scale level, each is a 4D-tensor, has shape
                (batch_size, num_priors * 1, H, W). Defaults to None.
            param_preds (list[Tensor], optional): Params for all scale
                level, each is a 4D-tensor, has shape
                (batch_size, num_priors * num_params, H, W)
            batch_img_metas (list[dict], Optional): Batch image meta info.
                Defaults to None.
            cfg (ConfigDict, optional): Test / postprocessing
                configuration, if None, test_cfg would be used.
                Defaults to None.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.
            with_nms (bool): If True, do nms before return boxes.
                Defaults to True.

        Returns:
            list[:obj:`InstanceData`]: Object detection results of each image
            after the post process. Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
        """
        assert len(cls_scores) == len(bbox_preds)

        if score_factors is None:
            # e.g. Retina, FreeAnchor, Foveabox, etc.
            with_score_factors = False
        else:
            # e.g. FCOS, PAA, ATSS, AutoAssign, etc.
            with_score_factors = True
            assert len(cls_scores) == len(score_factors)

        num_levels = len(cls_scores)

        featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
        all_level_points_strides = self.prior_generator.grid_priors(
            featmap_sizes,
            dtype=bbox_preds[0].dtype,
            device=bbox_preds[0].device,
            with_stride=True)
        all_level_points = [i[:, :2] for i in all_level_points_strides]
        all_level_strides = [i[:, 2] for i in all_level_points_strides]

        result_list = []

        for img_id in range(len(batch_img_metas)):
            img_meta = batch_img_metas[img_id]
            cls_score_list = select_single_mlvl(
                cls_scores, img_id, detach=True)
            bbox_pred_list = select_single_mlvl(
                bbox_preds, img_id, detach=True)
            if with_score_factors:
                score_factor_list = select_single_mlvl(
                    score_factors, img_id, detach=True)
            else:
                score_factor_list = [None for _ in range(num_levels)]
            param_pred_list = select_single_mlvl(
                param_preds, img_id, detach=True)

            results = self._predict_by_feat_single(
                cls_score_list=cls_score_list,
                bbox_pred_list=bbox_pred_list,
                score_factor_list=score_factor_list,
                param_pred_list=param_pred_list,
                mlvl_points=all_level_points,
                mlvl_strides=all_level_strides,
                img_meta=img_meta,
                cfg=cfg,
                rescale=rescale,
                with_nms=with_nms)
            result_list.append(results)
        return result_list

    def _predict_by_feat_single(self,
                                cls_score_list: List[Tensor],
                                bbox_pred_list: List[Tensor],
                                score_factor_list: List[Tensor],
                                param_pred_list: List[Tensor],
                                mlvl_points: List[Tensor],
                                mlvl_strides: List[Tensor],
                                img_meta: dict,
                                cfg: ConfigDict,
                                rescale: bool = False,
                                with_nms: bool = True) -> InstanceData:
        """Transform a single image's features extracted from the head into
        bbox results.

        Args:
            cls_score_list (list[Tensor]): Box scores from all scale
                levels of a single image, each item has shape
                (num_priors * num_classes, H, W).
            bbox_pred_list (list[Tensor]): Box energies / deltas from
                all scale levels of a single image, each item has shape
                (num_priors * 4, H, W).
            score_factor_list (list[Tensor]): Score factor from all scale
                levels of a single image, each item has shape
                (num_priors * 1, H, W).
            param_pred_list (List[Tensor]): Param predition from all scale
                levels of a single image, each item has shape
                (num_priors * num_params, H, W).
            mlvl_points (list[Tensor]): Each element in the list is
                the priors of a single level in feature pyramid.
                It has shape (num_priors, 2)
            mlvl_strides (List[Tensor]):  Each element in the list is
                the stride of a single level in feature pyramid.
                It has shape (num_priors, 1)
            img_meta (dict): Image meta info.
            cfg (mmengine.Config): Test / postprocessing configuration,
                if None, test_cfg would be used.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.
            with_nms (bool): If True, do nms before return boxes.
                Defaults to True.

        Returns:
            :obj:`InstanceData`: Detection results of each image
            after the post process.
            Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
        """
        if score_factor_list[0] is None:
            # e.g. Retina, FreeAnchor, etc.
            with_score_factors = False
        else:
            # e.g. FCOS, PAA, ATSS, etc.
            with_score_factors = True

        cfg = self.test_cfg if cfg is None else cfg
        cfg = copy.deepcopy(cfg)
        img_shape = img_meta['img_shape']
        nms_pre = cfg.get('nms_pre', -1)

        mlvl_bbox_preds = []
        mlvl_param_preds = []
        mlvl_valid_points = []
        mlvl_valid_strides = []
        mlvl_scores = []
        mlvl_labels = []
        if with_score_factors:
            mlvl_score_factors = []
        else:
            mlvl_score_factors = None
        for level_idx, (cls_score, bbox_pred, score_factor,
                        param_pred, points, strides) in \
                enumerate(zip(cls_score_list, bbox_pred_list,
                              score_factor_list, param_pred_list,
                              mlvl_points, mlvl_strides)):

            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]

            dim = self.bbox_coder.encode_size
            bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, dim)
            if with_score_factors:
                score_factor = score_factor.permute(1, 2,
                                                    0).reshape(-1).sigmoid()
            cls_score = cls_score.permute(1, 2,
                                          0).reshape(-1, self.cls_out_channels)
            if self.use_sigmoid_cls:
                scores = cls_score.sigmoid()
            else:
                # remind that we set FG labels to [0, num_class-1]
                # since mmdet v2.0
                # BG cat_id: num_class
                scores = cls_score.softmax(-1)[:, :-1]

            param_pred = param_pred.permute(1, 2,
                                            0).reshape(-1, self.num_params)

            # After https://github.com/open-mmlab/mmdetection/pull/6268/,
            # this operation keeps fewer bboxes under the same `nms_pre`.
            # There is no difference in performance for most models. If you
            # find a slight drop in performance, you can set a larger
            # `nms_pre` than before.
            score_thr = cfg.get('score_thr', 0)

            results = filter_scores_and_topk(
                scores, score_thr, nms_pre,
                dict(
                    bbox_pred=bbox_pred,
                    param_pred=param_pred,
                    points=points,
                    strides=strides))
            scores, labels, keep_idxs, filtered_results = results

            bbox_pred = filtered_results['bbox_pred']
            param_pred = filtered_results['param_pred']
            points = filtered_results['points']
            strides = filtered_results['strides']

            if with_score_factors:
                score_factor = score_factor[keep_idxs]

            mlvl_bbox_preds.append(bbox_pred)
            mlvl_param_preds.append(param_pred)
            mlvl_valid_points.append(points)
            mlvl_valid_strides.append(strides)
            mlvl_scores.append(scores)
            mlvl_labels.append(labels)

            if with_score_factors:
                mlvl_score_factors.append(score_factor)

        bbox_pred = torch.cat(mlvl_bbox_preds)
        priors = cat_boxes(mlvl_valid_points)
        bboxes = self.bbox_coder.decode(priors, bbox_pred, max_shape=img_shape)

        results = InstanceData()
        results.bboxes = bboxes
        results.scores = torch.cat(mlvl_scores)
        results.labels = torch.cat(mlvl_labels)
        results.param_preds = torch.cat(mlvl_param_preds)
        results.points = torch.cat(mlvl_valid_points)
        results.strides = torch.cat(mlvl_valid_strides)
        if with_score_factors:
            results.score_factors = torch.cat(mlvl_score_factors)

        return self._bbox_post_process(
            results=results,
            cfg=cfg,
            rescale=rescale,
            with_nms=with_nms,
            img_meta=img_meta)


class MaskFeatModule(BaseModule):
    """CondInst mask feature map branch used in \
    https://arxiv.org/abs/1904.02689.

    Args:
        in_channels (int): Number of channels in the input feature map.
        feat_channels (int): Number of hidden channels of the mask feature
             map branch.
        start_level (int): The starting feature map level from RPN that
             will be used to predict the mask feature map.
        end_level (int): The ending feature map level from rpn that
             will be used to predict the mask feature map.
        out_channels (int): Number of output channels of the mask feature
             map branch. This is the channel count of the mask
             feature map that to be dynamically convolved with the predicted
             kernel.
        mask_stride (int): Downsample factor of the mask feature map output.
            Defaults to 4.
        num_stacked_convs (int): Number of convs in mask feature branch.
        conv_cfg (dict): Config dict for convolution layer. Default: None.
        norm_cfg (dict): Config dict for normalization layer. Default: None.
        init_cfg (dict or list[dict], optional): Initialization config dict.
    """

    def __init__(self,
                 in_channels: int,
                 feat_channels: int,
                 start_level: int,
                 end_level: int,
                 out_channels: int,
                 mask_stride: int = 4,
                 num_stacked_convs: int = 4,
                 conv_cfg: OptConfigType = None,
                 norm_cfg: OptConfigType = None,
                 init_cfg: MultiConfig = [
                     dict(type='Normal', layer='Conv2d', std=0.01)
                 ],
                 **kwargs) -> None:
        super().__init__(init_cfg=init_cfg)
        self.in_channels = in_channels
        self.feat_channels = feat_channels
        self.start_level = start_level
        self.end_level = end_level
        self.mask_stride = mask_stride
        self.num_stacked_convs = num_stacked_convs
        assert start_level >= 0 and end_level >= start_level
        self.out_channels = out_channels
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self._init_layers()

    def _init_layers(self) -> None:
        """Initialize layers of the head."""
        self.convs_all_levels = nn.ModuleList()
        for i in range(self.start_level, self.end_level + 1):
            convs_per_level = nn.Sequential()
            convs_per_level.add_module(
                f'conv{i}',
                ConvModule(
                    self.in_channels,
                    self.feat_channels,
                    3,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg,
                    inplace=False,
                    bias=False))
            self.convs_all_levels.append(convs_per_level)

        conv_branch = []
        for _ in range(self.num_stacked_convs):
            conv_branch.append(
                ConvModule(
                    self.feat_channels,
                    self.feat_channels,
                    3,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg,
                    bias=False))
        self.conv_branch = nn.Sequential(*conv_branch)

        self.conv_pred = nn.Conv2d(
            self.feat_channels, self.out_channels, 1, stride=1)

    def init_weights(self) -> None:
        """Initialize weights of the head."""
        super().init_weights()
        kaiming_init(self.convs_all_levels, a=1, distribution='uniform')
        kaiming_init(self.conv_branch, a=1, distribution='uniform')
        kaiming_init(self.conv_pred, a=1, distribution='uniform')

    def forward(self, x: Tuple[Tensor]) -> Tensor:
        """Forward features from the upstream network.

        Args:
            x (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            Tensor: The predicted mask feature map.
        """
        inputs = x[self.start_level:self.end_level + 1]
        assert len(inputs) == (self.end_level - self.start_level + 1)
        feature_add_all_level = self.convs_all_levels[0](inputs[0])
        target_h, target_w = feature_add_all_level.size()[2:]
        for i in range(1, len(inputs)):
            input_p = inputs[i]
            x_p = self.convs_all_levels[i](input_p)
            h, w = x_p.size()[2:]
            factor_h = target_h // h
            factor_w = target_w // w
            assert factor_h == factor_w
            feature_per_level = aligned_bilinear(x_p, factor_h)
            feature_add_all_level = feature_add_all_level + \
                feature_per_level

        feature_add_all_level = self.conv_branch(feature_add_all_level)
        feature_pred = self.conv_pred(feature_add_all_level)
        return feature_pred


@MODELS.register_module()
class CondInstMaskHead(BaseMaskHead):
    """CondInst mask head used in https://arxiv.org/abs/1904.02689.

    This head outputs the mask for CondInst.

    Args:
        mask_feature_head (dict): Config of CondInstMaskFeatHead.
        num_layers (int): Number of dynamic conv layers.
        feat_channels (int): Number of channels in the dynamic conv.
        mask_out_stride (int): The stride of the mask feat.
        size_of_interest (int): The size of the region used in rel coord.
        max_masks_to_train (int): Maximum number of masks to train for
            each image.
        loss_segm (:obj:`ConfigDict` or dict, optional): Config of
            segmentation loss.
        train_cfg (:obj:`ConfigDict` or dict, optional): Training config
            of head.
        test_cfg (:obj:`ConfigDict` or dict, optional): Testing config of
            head.
    """

    def __init__(self,
                 mask_feature_head: ConfigType,
                 num_layers: int = 3,
                 feat_channels: int = 8,
                 mask_out_stride: int = 4,
                 size_of_interest: int = 8,
                 max_masks_to_train: int = -1,
                 topk_masks_per_img: int = -1,
                 loss_mask: ConfigType = None,
                 train_cfg: OptConfigType = None,
                 test_cfg: OptConfigType = None) -> None:
        super().__init__()
        self.mask_feature_head = MaskFeatModule(**mask_feature_head)
        self.mask_feat_stride = self.mask_feature_head.mask_stride
        self.in_channels = self.mask_feature_head.out_channels
        self.num_layers = num_layers
        self.feat_channels = feat_channels
        self.size_of_interest = size_of_interest
        self.mask_out_stride = mask_out_stride
        self.max_masks_to_train = max_masks_to_train
        self.topk_masks_per_img = topk_masks_per_img
        self.prior_generator = MlvlPointGenerator([self.mask_feat_stride])

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.loss_mask = MODELS.build(loss_mask)
        self._init_layers()

    def _init_layers(self) -> None:
        """Initialize layers of the head."""
        weight_nums, bias_nums = [], []
        for i in range(self.num_layers):
            if i == 0:
                weight_nums.append((self.in_channels + 2) * self.feat_channels)
                bias_nums.append(self.feat_channels)
            elif i == self.num_layers - 1:
                weight_nums.append(self.feat_channels * 1)
                bias_nums.append(1)
            else:
                weight_nums.append(self.feat_channels * self.feat_channels)
                bias_nums.append(self.feat_channels)

        self.weight_nums = weight_nums
        self.bias_nums = bias_nums
        self.num_params = sum(weight_nums) + sum(bias_nums)

    def parse_dynamic_params(
            self, params: Tensor) -> Tuple[List[Tensor], List[Tensor]]:
        """parse the dynamic params for dynamic conv."""
        num_insts = params.size(0)
        params_splits = list(
            torch.split_with_sizes(
                params, self.weight_nums + self.bias_nums, dim=1))
        weight_splits = params_splits[:self.num_layers]
        bias_splits = params_splits[self.num_layers:]
        for i in range(self.num_layers):
            if i < self.num_layers - 1:
                weight_splits[i] = weight_splits[i].reshape(
                    num_insts * self.in_channels, -1, 1, 1)
                bias_splits[i] = bias_splits[i].reshape(num_insts *
                                                        self.in_channels)
            else:
                # out_channels x in_channels x 1 x 1
                weight_splits[i] = weight_splits[i].reshape(
                    num_insts * 1, -1, 1, 1)
                bias_splits[i] = bias_splits[i].reshape(num_insts)

        return weight_splits, bias_splits

    def dynamic_conv_forward(self, features: Tensor, weights: List[Tensor],
                             biases: List[Tensor], num_insts: int) -> Tensor:
        """dynamic forward, each layer follow a relu."""
        n_layers = len(weights)
        x = features
        for i, (w, b) in enumerate(zip(weights, biases)):
            x = F.conv2d(x, w, bias=b, stride=1, padding=0, groups=num_insts)
            if i < n_layers - 1:
                x = F.relu(x)
        return x

    def forward(self, x: tuple, positive_infos: InstanceList) -> tuple:
        """Forward feature from the upstream network to get prototypes and
        linearly combine the prototypes, using masks coefficients, into
        instance masks. Finally, crop the instance masks with given bboxes.

        Args:
            x (Tuple[Tensor]): Feature from the upstream network, which is
                a 4D-tensor.
            positive_infos (List[:obj:``InstanceData``]): Positive information
                that calculate from detect head.

        Returns:
            tuple: Predicted instance segmentation masks
        """
        mask_feats = self.mask_feature_head(x)
        return multi_apply(self.forward_single, mask_feats, positive_infos)

    def forward_single(self, mask_feat: Tensor,
                       positive_info: InstanceData) -> Tensor:
        """Forward features of a each image."""
        pos_param_preds = positive_info.get('param_preds')
        pos_points = positive_info.get('points')
        pos_strides = positive_info.get('strides')

        num_inst = pos_param_preds.shape[0]
        mask_feat = mask_feat[None].repeat(num_inst, 1, 1, 1)
        _, _, H, W = mask_feat.size()
        if num_inst == 0:
            return (pos_param_preds.new_zeros((0, 1, H, W)), )

        locations = self.prior_generator.single_level_grid_priors(
            mask_feat.size()[2:], 0, device=mask_feat.device)

        rel_coords = relative_coordinate_maps(locations, pos_points,
                                              pos_strides,
                                              self.size_of_interest,
                                              mask_feat.size()[2:])
        mask_head_inputs = torch.cat([rel_coords, mask_feat], dim=1)
        mask_head_inputs = mask_head_inputs.reshape(1, -1, H, W)

        weights, biases = self.parse_dynamic_params(pos_param_preds)
        mask_preds = self.dynamic_conv_forward(mask_head_inputs, weights,
                                               biases, num_inst)
        mask_preds = mask_preds.reshape(-1, H, W)
        mask_preds = aligned_bilinear(
            mask_preds.unsqueeze(0),
            int(self.mask_feat_stride / self.mask_out_stride)).squeeze(0)

        return (mask_preds, )

    def loss_by_feat(self, mask_preds: List[Tensor],
                     batch_gt_instances: InstanceList,
                     batch_img_metas: List[dict], positive_infos: InstanceList,
                     **kwargs) -> dict:
        """Calculate the loss based on the features extracted by the mask head.

        Args:
            mask_preds (list[Tensor]): List of predicted masks, each has
                shape (num_classes, H, W).
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes``, ``masks``,
                and ``labels`` attributes.
            batch_img_metas (list[dict]): Meta information of multiple images.
            positive_infos (List[:obj:``InstanceData``]): Information of
                positive samples of each image that are assigned in detection
                head.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        assert positive_infos is not None, \
            'positive_infos should not be None in `CondInstMaskHead`'
        losses = dict()

        loss_mask = 0.
        num_imgs = len(mask_preds)
        total_pos = 0

        for idx in range(num_imgs):
            (mask_pred, pos_mask_targets, num_pos) = \
                self._get_targets_single(
                mask_preds[idx], batch_gt_instances[idx],
                positive_infos[idx])
            # mask loss
            total_pos += num_pos
            if num_pos == 0 or pos_mask_targets is None:
                loss = mask_pred.new_zeros(1).mean()
            else:
                loss = self.loss_mask(
                    mask_pred, pos_mask_targets,
                    reduction_override='none').sum()
            loss_mask += loss

        if total_pos == 0:
            total_pos += 1  # avoid nan
        loss_mask = loss_mask / total_pos
        losses.update(loss_mask=loss_mask)
        return losses

    def _get_targets_single(self, mask_preds: Tensor,
                            gt_instances: InstanceData,
                            positive_info: InstanceData):
        """Compute targets for predictions of single image.

        Args:
            mask_preds (Tensor): Predicted prototypes with shape
                (num_classes, H, W).
            gt_instances (:obj:`InstanceData`): Ground truth of instance
                annotations. It should includes ``bboxes``, ``labels``,
                and ``masks`` attributes.
            positive_info (:obj:`InstanceData`): Information of positive
                samples that are assigned in detection head. It usually
                contains following keys.

                    - pos_assigned_gt_inds (Tensor): Assigner GT indexes of
                      positive proposals, has shape (num_pos, )
                    - pos_inds (Tensor): Positive index of image, has
                      shape (num_pos, ).
                    - param_pred (Tensor): Positive param preditions
                      with shape (num_pos, num_params).

        Returns:
            tuple: Usually returns a tuple containing learning targets.

            - mask_preds (Tensor): Positive predicted mask with shape
              (num_pos, mask_h, mask_w).
            - pos_mask_targets (Tensor): Positive mask targets with shape
              (num_pos, mask_h, mask_w).
            - num_pos (int): Positive numbers.
        """
        gt_bboxes = gt_instances.bboxes
        device = gt_bboxes.device
        gt_masks = gt_instances.masks.to_tensor(
            dtype=torch.bool, device=device).float()

        # process with mask targets
        pos_assigned_gt_inds = positive_info.get('pos_assigned_gt_inds')
        scores = positive_info.get('scores')
        centernesses = positive_info.get('centernesses')
        num_pos = pos_assigned_gt_inds.size(0)

        if gt_masks.size(0) == 0 or num_pos == 0:
            return mask_preds, None, 0
        # Since we're producing (near) full image masks,
        # it'd take too much vram to backprop on every single mask.
        # Thus we select only a subset.
        if (self.max_masks_to_train != -1) and \
           (num_pos > self.max_masks_to_train):
            perm = torch.randperm(num_pos)
            select = perm[:self.max_masks_to_train]
            mask_preds = mask_preds[select]
            pos_assigned_gt_inds = pos_assigned_gt_inds[select]
            num_pos = self.max_masks_to_train
        elif self.topk_masks_per_img != -1:
            unique_gt_inds = pos_assigned_gt_inds.unique()
            num_inst_per_gt = max(
                int(self.topk_masks_per_img / len(unique_gt_inds)), 1)

            keep_mask_preds = []
            keep_pos_assigned_gt_inds = []
            for gt_ind in unique_gt_inds:
                per_inst_pos_inds = (pos_assigned_gt_inds == gt_ind)
                mask_preds_per_inst = mask_preds[per_inst_pos_inds]
                gt_inds_per_inst = pos_assigned_gt_inds[per_inst_pos_inds]
                if sum(per_inst_pos_inds) > num_inst_per_gt:
                    per_inst_scores = scores[per_inst_pos_inds].sigmoid().max(
                        dim=1)[0]
                    per_inst_centerness = centernesses[
                        per_inst_pos_inds].sigmoid().reshape(-1, )
                    select = (per_inst_scores * per_inst_centerness).topk(
                        k=num_inst_per_gt, dim=0)[1]
                    mask_preds_per_inst = mask_preds_per_inst[select]
                    gt_inds_per_inst = gt_inds_per_inst[select]
                keep_mask_preds.append(mask_preds_per_inst)
                keep_pos_assigned_gt_inds.append(gt_inds_per_inst)
            mask_preds = torch.cat(keep_mask_preds)
            pos_assigned_gt_inds = torch.cat(keep_pos_assigned_gt_inds)
            num_pos = pos_assigned_gt_inds.size(0)

        # Follow the origin implement
        start = int(self.mask_out_stride // 2)
        gt_masks = gt_masks[:, start::self.mask_out_stride,
                            start::self.mask_out_stride]
        gt_masks = gt_masks.gt(0.5).float()
        pos_mask_targets = gt_masks[pos_assigned_gt_inds]

        return (mask_preds, pos_mask_targets, num_pos)

    def predict_by_feat(self,
                        mask_preds: List[Tensor],
                        results_list: InstanceList,
                        batch_img_metas: List[dict],
                        rescale: bool = True,
                        **kwargs) -> InstanceList:
        """Transform a batch of output features extracted from the head into
        mask results.

        Args:
            mask_preds (list[Tensor]): Predicted prototypes with shape
                (num_classes, H, W).
            results_list (List[:obj:``InstanceData``]): BBoxHead results.
            batch_img_metas (list[dict]): Meta information of all images.
            rescale (bool, optional): Whether to rescale the results.
                Defaults to False.

        Returns:
            list[:obj:`InstanceData`]: Processed results of multiple
            images.Each :obj:`InstanceData` usually contains
            following keys.

                - scores (Tensor): Classification scores, has shape
                  (num_instance,).
                - labels (Tensor): Has shape (num_instances,).
                - masks (Tensor): Processed mask results, has
                  shape (num_instances, h, w).
        """
        assert len(mask_preds) == len(results_list) == len(batch_img_metas)

        for img_id in range(len(batch_img_metas)):
            img_meta = batch_img_metas[img_id]
            results = results_list[img_id]
            bboxes = results.bboxes
            mask_pred = mask_preds[img_id]
            if bboxes.shape[0] == 0 or mask_pred.shape[0] == 0:
                results_list[img_id] = empty_instances(
                    [img_meta],
                    bboxes.device,
                    task_type='mask',
                    instance_results=[results])[0]
            else:
                im_mask = self._predict_by_feat_single(
                    mask_preds=mask_pred,
                    bboxes=bboxes,
                    img_meta=img_meta,
                    rescale=rescale)
                results.masks = im_mask
        return results_list

    def _predict_by_feat_single(self,
                                mask_preds: Tensor,
                                bboxes: Tensor,
                                img_meta: dict,
                                rescale: bool,
                                cfg: OptConfigType = None):
        """Transform a single image's features extracted from the head into
        mask results.

        Args:
            mask_preds (Tensor): Predicted prototypes, has shape [H, W, N].
            img_meta (dict): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            rescale (bool): If rescale is False, then returned masks will
                fit the scale of imgs[0].
            cfg (dict, optional): Config used in test phase.
                Defaults to None.

        Returns:
            :obj:`InstanceData`: Processed results of single image.
             it usually contains following keys.

                - scores (Tensor): Classification scores, has shape
                  (num_instance,).
                - labels (Tensor): Has shape (num_instances,).
                - masks (Tensor): Processed mask results, has
                  shape (num_instances, h, w).
        """
        cfg = self.test_cfg if cfg is None else cfg
        scale_factor = bboxes.new_tensor(img_meta['scale_factor']).repeat(
            (1, 2))
        img_h, img_w = img_meta['img_shape'][:2]
        ori_h, ori_w = img_meta['ori_shape'][:2]

        mask_preds = mask_preds.sigmoid().unsqueeze(0)
        mask_preds = aligned_bilinear(mask_preds, self.mask_out_stride)
        mask_preds = mask_preds[:, :, :img_h, :img_w]
        if rescale:  # in-placed rescale the bboxes
            scale_factor = bboxes.new_tensor(img_meta['scale_factor']).repeat(
                (1, 2))
            bboxes /= scale_factor

            masks = F.interpolate(
                mask_preds, (ori_h, ori_w),
                mode='bilinear',
                align_corners=False).squeeze(0) > cfg.mask_thr
        else:
            masks = mask_preds.squeeze(0) > cfg.mask_thr

        return masks