File size: 4,707 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright (c) OpenMMLab. All rights reserved.
import warnings

import torch.nn as nn
from mmcv.cnn import VGG
from mmengine.model import BaseModule

from mmdet.registry import MODELS
from ..necks import ssd_neck


@MODELS.register_module()
class SSDVGG(VGG, BaseModule):
    """VGG Backbone network for single-shot-detection.

    Args:
        depth (int): Depth of vgg, from {11, 13, 16, 19}.
        with_last_pool (bool): Whether to add a pooling layer at the last
            of the model
        ceil_mode (bool): When True, will use `ceil` instead of `floor`
            to compute the output shape.
        out_indices (Sequence[int]): Output from which stages.
        out_feature_indices (Sequence[int]): Output from which feature map.
        pretrained (str, optional): model pretrained path. Default: None
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None
        input_size (int, optional): Deprecated argumment.
            Width and height of input, from {300, 512}.
        l2_norm_scale (float, optional) : Deprecated argumment.
            L2 normalization layer init scale.

    Example:
        >>> self = SSDVGG(input_size=300, depth=11)
        >>> self.eval()
        >>> inputs = torch.rand(1, 3, 300, 300)
        >>> level_outputs = self.forward(inputs)
        >>> for level_out in level_outputs:
        ...     print(tuple(level_out.shape))
        (1, 1024, 19, 19)
        (1, 512, 10, 10)
        (1, 256, 5, 5)
        (1, 256, 3, 3)
        (1, 256, 1, 1)
    """
    extra_setting = {
        300: (256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256),
        512: (256, 'S', 512, 128, 'S', 256, 128, 'S', 256, 128, 'S', 256, 128),
    }

    def __init__(self,
                 depth,
                 with_last_pool=False,
                 ceil_mode=True,
                 out_indices=(3, 4),
                 out_feature_indices=(22, 34),
                 pretrained=None,
                 init_cfg=None,
                 input_size=None,
                 l2_norm_scale=None):
        # TODO: in_channels for mmcv.VGG
        super(SSDVGG, self).__init__(
            depth,
            with_last_pool=with_last_pool,
            ceil_mode=ceil_mode,
            out_indices=out_indices)

        self.features.add_module(
            str(len(self.features)),
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1))
        self.features.add_module(
            str(len(self.features)),
            nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6))
        self.features.add_module(
            str(len(self.features)), nn.ReLU(inplace=True))
        self.features.add_module(
            str(len(self.features)), nn.Conv2d(1024, 1024, kernel_size=1))
        self.features.add_module(
            str(len(self.features)), nn.ReLU(inplace=True))
        self.out_feature_indices = out_feature_indices

        assert not (init_cfg and pretrained), \
            'init_cfg and pretrained cannot be specified at the same time'

        if init_cfg is not None:
            self.init_cfg = init_cfg
        elif isinstance(pretrained, str):
            warnings.warn('DeprecationWarning: pretrained is deprecated, '
                          'please use "init_cfg" instead')
            self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
        elif pretrained is None:
            self.init_cfg = [
                dict(type='Kaiming', layer='Conv2d'),
                dict(type='Constant', val=1, layer='BatchNorm2d'),
                dict(type='Normal', std=0.01, layer='Linear'),
            ]
        else:
            raise TypeError('pretrained must be a str or None')

        if input_size is not None:
            warnings.warn('DeprecationWarning: input_size is deprecated')
        if l2_norm_scale is not None:
            warnings.warn('DeprecationWarning: l2_norm_scale in VGG is '
                          'deprecated, it has been moved to SSDNeck.')

    def init_weights(self, pretrained=None):
        super(VGG, self).init_weights()

    def forward(self, x):
        """Forward function."""
        outs = []
        for i, layer in enumerate(self.features):
            x = layer(x)
            if i in self.out_feature_indices:
                outs.append(x)

        if len(outs) == 1:
            return outs[0]
        else:
            return tuple(outs)


class L2Norm(ssd_neck.L2Norm):

    def __init__(self, **kwargs):
        super(L2Norm, self).__init__(**kwargs)
        warnings.warn('DeprecationWarning: L2Norm in ssd_vgg.py '
                      'is deprecated, please use L2Norm in '
                      'mmdet/models/necks/ssd_neck.py instead')