File size: 43,528 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
# Copyright (c) OpenMMLab. All rights reserved.
import inspect
import math
import numbers
from numbers import Number
from typing import Dict, List, Optional, Sequence, Tuple, Union

import mmcv
import mmengine
import numpy as np
from mmcv.transforms import BaseTransform
from mmcv.transforms.utils import cache_randomness

from mmcls.registry import TRANSFORMS

try:
    import albumentations
except ImportError:
    albumentations = None


@TRANSFORMS.register_module()
class RandomCrop(BaseTransform):
    """Crop the given Image at a random location.

    **Required Keys:**

    - img

    **Modified Keys:**

    - img
    - img_shape

    Args:
        crop_size (int | Sequence): Desired output size of the crop. If
            crop_size is an int instead of sequence like (h, w), a square crop
            (crop_size, crop_size) is made.
        padding (int | Sequence, optional): Optional padding on each border
            of the image. If a sequence of length 4 is provided, it is used to
            pad left, top, right, bottom borders respectively.  If a sequence
            of length 2 is provided, it is used to pad left/right, top/bottom
            borders, respectively. Default: None, which means no padding.
        pad_if_needed (bool): It will pad the image if smaller than the
            desired size to avoid raising an exception. Since cropping is done
            after padding, the padding seems to be done at a random offset.
            Default: False.
        pad_val (Number | Sequence[Number]): Pixel pad_val value for constant
            fill. If a tuple of length 3, it is used to pad_val R, G, B
            channels respectively. Default: 0.
        padding_mode (str): Type of padding. Defaults to "constant". Should
            be one of the following:

            - ``constant``: Pads with a constant value, this value is specified
              with pad_val.
            - ``edge``: pads with the last value at the edge of the image.
            - ``reflect``: Pads with reflection of image without repeating the
              last value on the edge. For example, padding [1, 2, 3, 4]
              with 2 elements on both sides in reflect mode will result
              in [3, 2, 1, 2, 3, 4, 3, 2].
            - ``symmetric``: Pads with reflection of image repeating the last
              value on the edge. For example, padding [1, 2, 3, 4] with
              2 elements on both sides in symmetric mode will result in
              [2, 1, 1, 2, 3, 4, 4, 3].
    """

    def __init__(self,
                 crop_size: Union[Sequence, int],
                 padding: Optional[Union[Sequence, int]] = None,
                 pad_if_needed: bool = False,
                 pad_val: Union[Number, Sequence[Number]] = 0,
                 padding_mode: str = 'constant'):
        if isinstance(crop_size, Sequence):
            assert len(crop_size) == 2
            assert crop_size[0] > 0 and crop_size[1] > 0
            self.crop_size = crop_size
        else:
            assert crop_size > 0
            self.crop_size = (crop_size, crop_size)
        # check padding mode
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.pad_val = pad_val
        self.padding_mode = padding_mode

    @cache_randomness
    def rand_crop_params(self, img: np.ndarray):
        """Get parameters for ``crop`` for a random crop.

        Args:
            img (ndarray): Image to be cropped.

        Returns:
            tuple: Params (offset_h, offset_w, target_h, target_w) to be
                passed to ``crop`` for random crop.
        """
        h, w = img.shape[:2]
        target_h, target_w = self.crop_size
        if w == target_w and h == target_h:
            return 0, 0, h, w
        elif w < target_w or h < target_h:
            target_w = min(w, target_w)
            target_h = min(w, target_h)

        offset_h = np.random.randint(0, h - target_h + 1)
        offset_w = np.random.randint(0, w - target_w + 1)

        return offset_h, offset_w, target_h, target_w

    def transform(self, results: dict) -> dict:
        """Transform function to randomly crop images.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Randomly cropped results, 'img_shape'
                key in result dict is updated according to crop size.
        """
        img = results['img']
        if self.padding is not None:
            img = mmcv.impad(img, padding=self.padding, pad_val=self.pad_val)

        # pad img if needed
        if self.pad_if_needed:
            h_pad = math.ceil(max(0, self.crop_size[0] - img.shape[0]) / 2)
            w_pad = math.ceil(max(0, self.crop_size[1] - img.shape[1]) / 2)

            img = mmcv.impad(
                img,
                padding=(w_pad, h_pad, w_pad, h_pad),
                pad_val=self.pad_val,
                padding_mode=self.padding_mode)

        offset_h, offset_w, target_h, target_w = self.rand_crop_params(img)
        img = mmcv.imcrop(
            img,
            np.array([
                offset_w,
                offset_h,
                offset_w + target_w - 1,
                offset_h + target_h - 1,
            ]))
        results['img'] = img
        results['img_shape'] = img.shape

        return results

    def __repr__(self):
        """Print the basic information of the transform.

        Returns:
            str: Formatted string.
        """
        repr_str = self.__class__.__name__ + f'(crop_size={self.crop_size}'
        repr_str += f', padding={self.padding}'
        repr_str += f', pad_if_needed={self.pad_if_needed}'
        repr_str += f', pad_val={self.pad_val}'
        repr_str += f', padding_mode={self.padding_mode})'
        return repr_str


@TRANSFORMS.register_module()
class RandomResizedCrop(BaseTransform):
    """Crop the given image to random scale and aspect ratio.

    A crop of random size (default: of 0.08 to 1.0) of the original size and a
    random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio
    is made. This crop is finally resized to given size.

    **Required Keys:**

    - img

    **Modified Keys:**

    - img
    - img_shape

    Args:
        scale (sequence | int): Desired output scale of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        crop_ratio_range (tuple): Range of the random size of the cropped
            image compared to the original image. Defaults to (0.08, 1.0).
        aspect_ratio_range (tuple): Range of the random aspect ratio of the
            cropped image compared to the original image.
            Defaults to (3. / 4., 4. / 3.).
        max_attempts (int): Maximum number of attempts before falling back to
            Central Crop. Defaults to 10.
        interpolation (str): Interpolation method, accepted values are
            'nearest', 'bilinear', 'bicubic', 'area', 'lanczos'. Defaults to
            'bilinear'.
        backend (str): The image resize backend type, accepted values are
            'cv2' and 'pillow'. Defaults to 'cv2'.
    """

    def __init__(self,
                 scale: Union[Sequence, int],
                 crop_ratio_range: Tuple[float, float] = (0.08, 1.0),
                 aspect_ratio_range: Tuple[float, float] = (3. / 4., 4. / 3.),
                 max_attempts: int = 10,
                 interpolation: str = 'bilinear',
                 backend: str = 'cv2') -> None:
        if isinstance(scale, Sequence):
            assert len(scale) == 2
            assert scale[0] > 0 and scale[1] > 0
            self.scale = scale
        else:
            assert scale > 0
            self.scale = (scale, scale)
        if (crop_ratio_range[0] > crop_ratio_range[1]) or (
                aspect_ratio_range[0] > aspect_ratio_range[1]):
            raise ValueError(
                'range should be of kind (min, max). '
                f'But received crop_ratio_range {crop_ratio_range} '
                f'and aspect_ratio_range {aspect_ratio_range}.')
        assert isinstance(max_attempts, int) and max_attempts >= 0, \
            'max_attempts mush be int and no less than 0.'
        assert interpolation in ('nearest', 'bilinear', 'bicubic', 'area',
                                 'lanczos')

        self.crop_ratio_range = crop_ratio_range
        self.aspect_ratio_range = aspect_ratio_range
        self.max_attempts = max_attempts
        self.interpolation = interpolation
        self.backend = backend

    @cache_randomness
    def rand_crop_params(self, img: np.ndarray) -> Tuple[int, int, int, int]:
        """Get parameters for ``crop`` for a random sized crop.

        Args:
            img (ndarray): Image to be cropped.

        Returns:
            tuple: Params (offset_h, offset_w, target_h, target_w) to be
                passed to `crop` for a random sized crop.
        """
        h, w = img.shape[:2]
        area = h * w

        for _ in range(self.max_attempts):
            target_area = np.random.uniform(*self.crop_ratio_range) * area
            log_ratio = (math.log(self.aspect_ratio_range[0]),
                         math.log(self.aspect_ratio_range[1]))
            aspect_ratio = math.exp(np.random.uniform(*log_ratio))
            target_w = int(round(math.sqrt(target_area * aspect_ratio)))
            target_h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < target_w <= w and 0 < target_h <= h:
                offset_h = np.random.randint(0, h - target_h + 1)
                offset_w = np.random.randint(0, w - target_w + 1)

                return offset_h, offset_w, target_h, target_w

        # Fallback to central crop
        in_ratio = float(w) / float(h)
        if in_ratio < min(self.aspect_ratio_range):
            target_w = w
            target_h = int(round(target_w / min(self.aspect_ratio_range)))
        elif in_ratio > max(self.aspect_ratio_range):
            target_h = h
            target_w = int(round(target_h * max(self.aspect_ratio_range)))
        else:  # whole image
            target_w = w
            target_h = h
        offset_h = (h - target_h) // 2
        offset_w = (w - target_w) // 2
        return offset_h, offset_w, target_h, target_w

    def transform(self, results: dict) -> dict:
        """Transform function to randomly resized crop images.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Randomly resized cropped results, 'img_shape'
                key in result dict is updated according to crop size.
        """
        img = results['img']
        offset_h, offset_w, target_h, target_w = self.rand_crop_params(img)
        img = mmcv.imcrop(
            img,
            bboxes=np.array([
                offset_w, offset_h, offset_w + target_w - 1,
                offset_h + target_h - 1
            ]))
        img = mmcv.imresize(
            img,
            tuple(self.scale[::-1]),
            interpolation=self.interpolation,
            backend=self.backend)
        results['img'] = img
        results['img_shape'] = img.shape

        return results

    def __repr__(self):
        """Print the basic information of the transform.

        Returns:
            str: Formatted string.
        """
        repr_str = self.__class__.__name__ + f'(scale={self.scale}'
        repr_str += ', crop_ratio_range='
        repr_str += f'{tuple(round(s, 4) for s in self.crop_ratio_range)}'
        repr_str += ', aspect_ratio_range='
        repr_str += f'{tuple(round(r, 4) for r in self.aspect_ratio_range)}'
        repr_str += f', max_attempts={self.max_attempts}'
        repr_str += f', interpolation={self.interpolation}'
        repr_str += f', backend={self.backend})'
        return repr_str


@TRANSFORMS.register_module()
class EfficientNetRandomCrop(RandomResizedCrop):
    """EfficientNet style RandomResizedCrop.

    **Required Keys:**

    - img

    **Modified Keys:**

    - img
    - img_shape

    Args:
        scale (int): Desired output scale of the crop. Only int size is
            accepted, a square crop (size, size) is made.
        min_covered (Number): Minimum ratio of the cropped area to the original
             area. Defaults to 0.1.
        crop_padding (int): The crop padding parameter in efficientnet style
            center crop. Defaults to 32.
        crop_ratio_range (tuple): Range of the random size of the cropped
            image compared to the original image. Defaults to (0.08, 1.0).
        aspect_ratio_range (tuple): Range of the random aspect ratio of the
            cropped image compared to the original image.
            Defaults to (3. / 4., 4. / 3.).
        max_attempts (int): Maximum number of attempts before falling back to
            Central Crop. Defaults to 10.
        interpolation (str): Interpolation method, accepted values are
            'nearest', 'bilinear', 'bicubic', 'area', 'lanczos'. Defaults to
            'bicubic'.
        backend (str): The image resize backend type, accepted values are
            'cv2' and 'pillow'. Defaults to 'cv2'.
    """

    def __init__(self,
                 scale: int,
                 min_covered: float = 0.1,
                 crop_padding: int = 32,
                 interpolation: str = 'bicubic',
                 **kwarg):
        assert isinstance(scale, int)
        super().__init__(scale, interpolation=interpolation, **kwarg)
        assert min_covered >= 0, 'min_covered should be no less than 0.'
        assert crop_padding >= 0, 'crop_padding should be no less than 0.'

        self.min_covered = min_covered
        self.crop_padding = crop_padding

    # https://github.com/kakaobrain/fast-autoaugment/blob/master/FastAutoAugment/data.py # noqa
    @cache_randomness
    def rand_crop_params(self, img: np.ndarray) -> Tuple[int, int, int, int]:
        """Get parameters for ``crop`` for a random sized crop.

        Args:
            img (ndarray): Image to be cropped.

        Returns:
            tuple: Params (offset_h, offset_w, target_h, target_w) to be
                passed to `crop` for a random sized crop.
        """
        h, w = img.shape[:2]
        area = h * w
        min_target_area = self.crop_ratio_range[0] * area
        max_target_area = self.crop_ratio_range[1] * area

        for _ in range(self.max_attempts):
            aspect_ratio = np.random.uniform(*self.aspect_ratio_range)
            min_target_h = int(
                round(math.sqrt(min_target_area / aspect_ratio)))
            max_target_h = int(
                round(math.sqrt(max_target_area / aspect_ratio)))

            if max_target_h * aspect_ratio > w:
                max_target_h = int((w + 0.5 - 1e-7) / aspect_ratio)
                if max_target_h * aspect_ratio > w:
                    max_target_h -= 1

            max_target_h = min(max_target_h, h)
            min_target_h = min(max_target_h, min_target_h)

            # slightly differs from tf implementation
            target_h = int(
                round(np.random.uniform(min_target_h, max_target_h)))
            target_w = int(round(target_h * aspect_ratio))
            target_area = target_h * target_w

            # slight differs from tf. In tf, if target_area > max_target_area,
            # area will be recalculated
            if (target_area < min_target_area or target_area > max_target_area
                    or target_w > w or target_h > h
                    or target_area < self.min_covered * area):
                continue

            offset_h = np.random.randint(0, h - target_h + 1)
            offset_w = np.random.randint(0, w - target_w + 1)

            return offset_h, offset_w, target_h, target_w

        # Fallback to central crop
        img_short = min(h, w)
        crop_size = self.scale[0] / (self.scale[0] +
                                     self.crop_padding) * img_short

        offset_h = max(0, int(round((h - crop_size) / 2.)))
        offset_w = max(0, int(round((w - crop_size) / 2.)))
        return offset_h, offset_w, crop_size, crop_size

    def __repr__(self):
        """Print the basic information of the transform.

        Returns:
            str: Formatted string.
        """
        repr_str = super().__repr__()[:-1]
        repr_str += f', min_covered={self.min_covered}'
        repr_str += f', crop_padding={self.crop_padding})'
        return repr_str


@TRANSFORMS.register_module()
class RandomErasing(BaseTransform):
    """Randomly selects a rectangle region in an image and erase pixels.

    **Required Keys:**

    - img

    **Modified Keys:**

    - img

    Args:
        erase_prob (float): Probability that image will be randomly erased.
            Default: 0.5
        min_area_ratio (float): Minimum erased area / input image area
            Default: 0.02
        max_area_ratio (float): Maximum erased area / input image area
            Default: 0.4
        aspect_range (sequence | float): Aspect ratio range of erased area.
            if float, it will be converted to (aspect_ratio, 1/aspect_ratio)
            Default: (3/10, 10/3)
        mode (str): Fill method in erased area, can be:

            - const (default): All pixels are assign with the same value.
            - rand: each pixel is assigned with a random value in [0, 255]

        fill_color (sequence | Number): Base color filled in erased area.
            Defaults to (128, 128, 128).
        fill_std (sequence | Number, optional): If set and ``mode`` is 'rand',
            fill erased area with random color from normal distribution
            (mean=fill_color, std=fill_std); If not set, fill erased area with
            random color from uniform distribution (0~255). Defaults to None.

    Note:
        See `Random Erasing Data Augmentation
        <https://arxiv.org/pdf/1708.04896.pdf>`_

        This paper provided 4 modes: RE-R, RE-M, RE-0, RE-255, and use RE-M as
        default. The config of these 4 modes are:

        - RE-R: RandomErasing(mode='rand')
        - RE-M: RandomErasing(mode='const', fill_color=(123.67, 116.3, 103.5))
        - RE-0: RandomErasing(mode='const', fill_color=0)
        - RE-255: RandomErasing(mode='const', fill_color=255)
    """

    def __init__(self,
                 erase_prob=0.5,
                 min_area_ratio=0.02,
                 max_area_ratio=0.4,
                 aspect_range=(3 / 10, 10 / 3),
                 mode='const',
                 fill_color=(128, 128, 128),
                 fill_std=None):
        assert isinstance(erase_prob, float) and 0. <= erase_prob <= 1.
        assert isinstance(min_area_ratio, float) and 0. <= min_area_ratio <= 1.
        assert isinstance(max_area_ratio, float) and 0. <= max_area_ratio <= 1.
        assert min_area_ratio <= max_area_ratio, \
            'min_area_ratio should be smaller than max_area_ratio'
        if isinstance(aspect_range, float):
            aspect_range = min(aspect_range, 1 / aspect_range)
            aspect_range = (aspect_range, 1 / aspect_range)
        assert isinstance(aspect_range, Sequence) and len(aspect_range) == 2 \
            and all(isinstance(x, float) for x in aspect_range), \
            'aspect_range should be a float or Sequence with two float.'
        assert all(x > 0 for x in aspect_range), \
            'aspect_range should be positive.'
        assert aspect_range[0] <= aspect_range[1], \
            'In aspect_range (min, max), min should be smaller than max.'
        assert mode in ['const', 'rand'], \
            'Please select `mode` from ["const", "rand"].'
        if isinstance(fill_color, Number):
            fill_color = [fill_color] * 3
        assert isinstance(fill_color, Sequence) and len(fill_color) == 3 \
            and all(isinstance(x, Number) for x in fill_color), \
            'fill_color should be a float or Sequence with three int.'
        if fill_std is not None:
            if isinstance(fill_std, Number):
                fill_std = [fill_std] * 3
            assert isinstance(fill_std, Sequence) and len(fill_std) == 3 \
                and all(isinstance(x, Number) for x in fill_std), \
                'fill_std should be a float or Sequence with three int.'

        self.erase_prob = erase_prob
        self.min_area_ratio = min_area_ratio
        self.max_area_ratio = max_area_ratio
        self.aspect_range = aspect_range
        self.mode = mode
        self.fill_color = fill_color
        self.fill_std = fill_std

    def _fill_pixels(self, img, top, left, h, w):
        """Fill pixels to the patch of image."""
        if self.mode == 'const':
            patch = np.empty((h, w, 3), dtype=np.uint8)
            patch[:, :] = np.array(self.fill_color, dtype=np.uint8)
        elif self.fill_std is None:
            # Uniform distribution
            patch = np.random.uniform(0, 256, (h, w, 3)).astype(np.uint8)
        else:
            # Normal distribution
            patch = np.random.normal(self.fill_color, self.fill_std, (h, w, 3))
            patch = np.clip(patch.astype(np.int32), 0, 255).astype(np.uint8)

        img[top:top + h, left:left + w] = patch
        return img

    @cache_randomness
    def random_disable(self):
        """Randomly disable the transform."""
        return np.random.rand() > self.erase_prob

    @cache_randomness
    def random_patch(self, img_h, img_w):
        """Randomly generate patch the erase."""
        # convert the aspect ratio to log space to equally handle width and
        # height.
        log_aspect_range = np.log(
            np.array(self.aspect_range, dtype=np.float32))
        aspect_ratio = np.exp(np.random.uniform(*log_aspect_range))
        area = img_h * img_w
        area *= np.random.uniform(self.min_area_ratio, self.max_area_ratio)

        h = min(int(round(np.sqrt(area * aspect_ratio))), img_h)
        w = min(int(round(np.sqrt(area / aspect_ratio))), img_w)
        top = np.random.randint(0, img_h - h) if img_h > h else 0
        left = np.random.randint(0, img_w - w) if img_w > w else 0
        return top, left, h, w

    def transform(self, results):
        """
        Args:
            results (dict): Results dict from pipeline

        Returns:
            dict: Results after the transformation.
        """
        if self.random_disable():
            return results

        img = results['img']
        img_h, img_w = img.shape[:2]

        img = self._fill_pixels(img, *self.random_patch(img_h, img_w))

        results['img'] = img

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(erase_prob={self.erase_prob}, '
        repr_str += f'min_area_ratio={self.min_area_ratio}, '
        repr_str += f'max_area_ratio={self.max_area_ratio}, '
        repr_str += f'aspect_range={self.aspect_range}, '
        repr_str += f'mode={self.mode}, '
        repr_str += f'fill_color={self.fill_color}, '
        repr_str += f'fill_std={self.fill_std})'
        return repr_str


@TRANSFORMS.register_module()
class EfficientNetCenterCrop(BaseTransform):
    r"""EfficientNet style center crop.

    **Required Keys:**

    - img

    **Modified Keys:**

    - img
    - img_shape

    Args:
        crop_size (int): Expected size after cropping with the format
            of (h, w).
        crop_padding (int): The crop padding parameter in efficientnet style
            center crop. Defaults to 32.
        interpolation (str): Interpolation method, accepted values are
            'nearest', 'bilinear', 'bicubic', 'area', 'lanczos'. Only valid if
            ``efficientnet_style`` is True. Defaults to 'bicubic'.
        backend (str): The image resize backend type, accepted values are
            `cv2` and `pillow`. Only valid if efficientnet style is True.
            Defaults to `cv2`.
    Notes:
        - If the image is smaller than the crop size, return the original
          image.
        - The pipeline will be to first
          to perform the center crop with the ``crop_size_`` as:

        .. math::

            \text{crop_size_} = \frac{\text{crop_size}}{\text{crop_size} +
            \text{crop_padding}} \times \text{short_edge}

        And then the pipeline resizes the img to the input crop size.
    """

    def __init__(self,
                 crop_size: int,
                 crop_padding: int = 32,
                 interpolation: str = 'bicubic',
                 backend: str = 'cv2'):
        assert isinstance(crop_size, int)
        assert crop_size > 0
        assert crop_padding >= 0
        assert interpolation in ('nearest', 'bilinear', 'bicubic', 'area',
                                 'lanczos')

        self.crop_size = crop_size
        self.crop_padding = crop_padding
        self.interpolation = interpolation
        self.backend = backend

    def transform(self, results: dict) -> dict:
        """Transform function to randomly resized crop images.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: EfficientNet style center cropped results, 'img_shape'
                key in result dict is updated according to crop size.
        """
        img = results['img']
        h, w = img.shape[:2]

        # https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/preprocessing.py#L118 # noqa
        img_short = min(h, w)
        crop_size = self.crop_size / (self.crop_size +
                                      self.crop_padding) * img_short

        offset_h = max(0, int(round((h - crop_size) / 2.)))
        offset_w = max(0, int(round((w - crop_size) / 2.)))

        # crop the image
        img = mmcv.imcrop(
            img,
            bboxes=np.array([
                offset_w, offset_h, offset_w + crop_size - 1,
                offset_h + crop_size - 1
            ]))
        # resize image
        img = mmcv.imresize(
            img, (self.crop_size, self.crop_size),
            interpolation=self.interpolation,
            backend=self.backend)
        results['img'] = img
        results['img_shape'] = img.shape

        return results

    def __repr__(self):
        """Print the basic information of the transform.

        Returns:
            str: Formatted string.
        """
        repr_str = self.__class__.__name__ + f'(crop_size={self.crop_size}'
        repr_str += f', crop_padding={self.crop_padding}'
        repr_str += f', interpolation={self.interpolation}'
        repr_str += f', backend={self.backend})'
        return repr_str


@TRANSFORMS.register_module()
class ResizeEdge(BaseTransform):
    """Resize images along the specified edge.

    **Required Keys:**

    - img

    **Modified Keys:**

    - img
    - img_shape

    **Added Keys:**

    - scale
    - scale_factor

    Args:
        scale (int): The edge scale to resizing.
        edge (str): The edge to resize. Defaults to 'short'.
        backend (str): Image resize backend, choices are 'cv2' and 'pillow'.
            These two backends generates slightly different results.
            Defaults to 'cv2'.
        interpolation (str): Interpolation method, accepted values are
            "nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
            backend, "nearest", "bilinear" for 'pillow' backend.
            Defaults to 'bilinear'.
    """

    def __init__(self,
                 scale: int,
                 edge: str = 'short',
                 backend: str = 'cv2',
                 interpolation: str = 'bilinear') -> None:
        allow_edges = ['short', 'long', 'width', 'height']
        assert edge in allow_edges, \
            f'Invalid edge "{edge}", please specify from {allow_edges}.'
        self.edge = edge
        self.scale = scale
        self.backend = backend
        self.interpolation = interpolation

    def _resize_img(self, results: dict) -> None:
        """Resize images with ``results['scale']``."""

        img, w_scale, h_scale = mmcv.imresize(
            results['img'],
            results['scale'],
            interpolation=self.interpolation,
            return_scale=True,
            backend=self.backend)
        results['img'] = img
        results['img_shape'] = img.shape[:2]
        results['scale'] = img.shape[:2][::-1]
        results['scale_factor'] = (w_scale, h_scale)

    def transform(self, results: Dict) -> Dict:
        """Transform function to resize images.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Resized results, 'img', 'scale', 'scale_factor',
            'img_shape' keys are updated in result dict.
        """
        assert 'img' in results, 'No `img` field in the input.'

        h, w = results['img'].shape[:2]
        if any([
                # conditions to resize the width
                self.edge == 'short' and w < h,
                self.edge == 'long' and w > h,
                self.edge == 'width',
        ]):
            width = self.scale
            height = int(self.scale * h / w)
        else:
            height = self.scale
            width = int(self.scale * w / h)
        results['scale'] = (width, height)

        self._resize_img(results)
        return results

    def __repr__(self):
        """Print the basic information of the transform.

        Returns:
            str: Formatted string.
        """
        repr_str = self.__class__.__name__
        repr_str += f'(scale={self.scale}, '
        repr_str += f'edge={self.edge}, '
        repr_str += f'backend={self.backend}, '
        repr_str += f'interpolation={self.interpolation})'
        return repr_str


@TRANSFORMS.register_module()
class ColorJitter(BaseTransform):
    """Randomly change the brightness, contrast and saturation of an image.

    Modified from
    https://github.com/pytorch/vision/blob/main/torchvision/transforms/transforms.py
    Licensed under the BSD 3-Clause License.

    **Required Keys:**

    - img

    **Modified Keys:**

    - img

    Args:
        brightness (float | Sequence[float] (min, max)): How much to jitter
            brightness. brightness_factor is chosen uniformly from
            ``[max(0, 1 - brightness), 1 + brightness]`` or the given
            ``[min, max]``. Should be non negative numbers. Defaults to 0.
        contrast (float | Sequence[float] (min, max)): How much to jitter
            contrast. contrast_factor is chosen uniformly from
            ``[max(0, 1 - contrast), 1 + contrast]`` or the given
            ``[min, max]``. Should be non negative numbers. Defaults to 0.
        saturation (float | Sequence[float] (min, max)): How much to jitter
            saturation. saturation_factor is chosen uniformly from
            ``[max(0, 1 - saturation), 1 + saturation]`` or the given
            ``[min, max]``. Should be non negative numbers. Defaults to 0.
        hue (float | Sequence[float] (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from ``[-hue, hue]`` (0 <= hue
            <= 0.5) or the given ``[min, max]`` (-0.5 <= min <= max <= 0.5).
            Defaults to 0.
    """

    def __init__(self,
                 brightness: Union[float, Sequence[float]] = 0.,
                 contrast: Union[float, Sequence[float]] = 0.,
                 saturation: Union[float, Sequence[float]] = 0.,
                 hue: Union[float, Sequence[float]] = 0.):
        self.brightness = self._set_range(brightness, 'brightness')
        self.contrast = self._set_range(contrast, 'contrast')
        self.saturation = self._set_range(saturation, 'saturation')
        self.hue = self._set_range(hue, 'hue', center=0, bound=(-0.5, 0.5))

    def _set_range(self, value, name, center=1, bound=(0, float('inf'))):
        """Set the range of magnitudes."""
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError(
                    f'If {name} is a single number, it must be non negative.')
            value = (center - float(value), center + float(value))

        if isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                value = np.clip(value, bound[0], bound[1])
                from mmengine.logging import MMLogger
                logger = MMLogger.get_current_instance()
                logger.warning(f'ColorJitter {name} values exceed the bound '
                               f'{bound}, clipped to the bound.')
        else:
            raise TypeError(f'{name} should be a single number '
                            'or a list/tuple with length 2.')

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        else:
            value = tuple(value)

        return value

    @cache_randomness
    def _rand_params(self):
        """Get random parameters including magnitudes and indices of
        transforms."""
        trans_inds = np.random.permutation(4)
        b, c, s, h = (None, ) * 4

        if self.brightness is not None:
            b = np.random.uniform(self.brightness[0], self.brightness[1])
        if self.contrast is not None:
            c = np.random.uniform(self.contrast[0], self.contrast[1])
        if self.saturation is not None:
            s = np.random.uniform(self.saturation[0], self.saturation[1])
        if self.hue is not None:
            h = np.random.uniform(self.hue[0], self.hue[1])

        return trans_inds, b, c, s, h

    def transform(self, results: Dict) -> Dict:
        """Transform function to resize images.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: ColorJitter results, 'img' key is updated in result dict.
        """
        img = results['img']
        trans_inds, brightness, contrast, saturation, hue = self._rand_params()

        for index in trans_inds:
            if index == 0 and brightness is not None:
                img = mmcv.adjust_brightness(img, brightness)
            elif index == 1 and contrast is not None:
                img = mmcv.adjust_contrast(img, contrast)
            elif index == 2 and saturation is not None:
                img = mmcv.adjust_color(img, alpha=saturation)
            elif index == 3 and hue is not None:
                img = mmcv.adjust_hue(img, hue)

        results['img'] = img
        return results

    def __repr__(self):
        """Print the basic information of the transform.

        Returns:
            str: Formatted string.
        """
        repr_str = self.__class__.__name__
        repr_str += f'(brightness={self.brightness}, '
        repr_str += f'contrast={self.contrast}, '
        repr_str += f'saturation={self.saturation}, '
        repr_str += f'hue={self.hue})'
        return repr_str


@TRANSFORMS.register_module()
class Lighting(BaseTransform):
    """Adjust images lighting using AlexNet-style PCA jitter.

    **Required Keys:**

    - img

    **Modified Keys:**

    - img

    Args:
        eigval (Sequence[float]): the eigenvalue of the convariance matrix
            of pixel values, respectively.
        eigvec (list[list]): the eigenvector of the convariance matrix of
            pixel values, respectively.
        alphastd (float): The standard deviation for distribution of alpha.
            Defaults to 0.1.
        to_rgb (bool): Whether to convert img to rgb. Defaults to False.
    """

    def __init__(self,
                 eigval: Sequence[float],
                 eigvec: Sequence[float],
                 alphastd: float = 0.1,
                 to_rgb: bool = False):
        assert isinstance(eigval, Sequence), \
            f'eigval must be Sequence, got {type(eigval)} instead.'
        assert isinstance(eigvec, Sequence), \
            f'eigvec must be Sequence, got {type(eigvec)} instead.'
        for vec in eigvec:
            assert isinstance(vec, Sequence) and len(vec) == len(eigvec[0]), \
                'eigvec must contains lists with equal length.'
        assert isinstance(alphastd, float), 'alphastd should be of type ' \
            f'float or int, got {type(alphastd)} instead.'

        self.eigval = np.array(eigval)
        self.eigvec = np.array(eigvec)
        self.alphastd = alphastd
        self.to_rgb = to_rgb

    def transform(self, results: Dict) -> Dict:
        """Transform function to resize images.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Lightinged results, 'img' key is updated in result dict.
        """
        assert 'img' in results, 'No `img` field in the input.'

        img = results['img']
        img_lighting = mmcv.adjust_lighting(
            img,
            self.eigval,
            self.eigvec,
            alphastd=self.alphastd,
            to_rgb=self.to_rgb)
        results['img'] = img_lighting.astype(img.dtype)
        return results

    def __repr__(self):
        """Print the basic information of the transform.

        Returns:
            str: Formatted string.
        """
        repr_str = self.__class__.__name__
        repr_str += f'(eigval={self.eigval.tolist()}, '
        repr_str += f'eigvec={self.eigvec.tolist()}, '
        repr_str += f'alphastd={self.alphastd}, '
        repr_str += f'to_rgb={self.to_rgb})'
        return repr_str


# 'Albu' is used in previous versions of mmcls, here is for compatibility
# users can use both 'Albumentations' and 'Albu'.
@TRANSFORMS.register_module(['Albumentations', 'Albu'])
class Albumentations(BaseTransform):
    """Wrapper to use augmentation from albumentations library.

    **Required Keys:**

    - img

    **Modified Keys:**

    - img
    - img_shape

    Adds custom transformations from albumentations library.
    More details can be found in
    `Albumentations <https://albumentations.readthedocs.io>`_.
    An example of ``transforms`` is as followed:

    .. code-block::

        [
            dict(
                type='ShiftScaleRotate',
                shift_limit=0.0625,
                scale_limit=0.0,
                rotate_limit=0,
                interpolation=1,
                p=0.5),
            dict(
                type='RandomBrightnessContrast',
                brightness_limit=[0.1, 0.3],
                contrast_limit=[0.1, 0.3],
                p=0.2),
            dict(type='ChannelShuffle', p=0.1),
            dict(
                type='OneOf',
                transforms=[
                    dict(type='Blur', blur_limit=3, p=1.0),
                    dict(type='MedianBlur', blur_limit=3, p=1.0)
                ],
                p=0.1),
        ]

    Args:
        transforms (List[Dict]): List of albumentations transform configs.
        keymap (Optional[Dict]): Mapping of mmcls to albumentations fields,
            in format {'input key':'albumentation-style key'}. Defaults to
            None.

    Example:
        >>> import mmcv
        >>> from mmcls.datasets import Albumentations
        >>> transforms = [
        ...     dict(
        ...         type='ShiftScaleRotate',
        ...         shift_limit=0.0625,
        ...         scale_limit=0.0,
        ...         rotate_limit=0,
        ...         interpolation=1,
        ...         p=0.5),
        ...     dict(
        ...         type='RandomBrightnessContrast',
        ...         brightness_limit=[0.1, 0.3],
        ...         contrast_limit=[0.1, 0.3],
        ...         p=0.2),
        ...     dict(type='ChannelShuffle', p=0.1),
        ...     dict(
        ...         type='OneOf',
        ...         transforms=[
        ...             dict(type='Blur', blur_limit=3, p=1.0),
        ...             dict(type='MedianBlur', blur_limit=3, p=1.0)
        ...         ],
        ...         p=0.1),
        ... ]
        >>> albu = Albumentations(transforms)
        >>> data = {'img': mmcv.imread('./demo/demo.JPEG')}
        >>> data = albu(data)
        >>> print(data['img'].shape)
        (375, 500, 3)
    """

    def __init__(self, transforms: List[Dict], keymap: Optional[Dict] = None):
        if albumentations is None:
            raise RuntimeError('albumentations is not installed')
        else:
            from albumentations import Compose as albu_Compose

        assert isinstance(transforms, list), 'transforms must be a list.'
        if keymap is not None:
            assert isinstance(keymap, dict), 'keymap must be None or a dict. '

        self.transforms = transforms

        self.aug = albu_Compose(
            [self.albu_builder(t) for t in self.transforms])

        if not keymap:
            self.keymap_to_albu = dict(img='image')
        else:
            self.keymap_to_albu = keymap
        self.keymap_back = {v: k for k, v in self.keymap_to_albu.items()}

    def albu_builder(self, cfg: Dict):
        """Import a module from albumentations.

        It inherits some of :func:`build_from_cfg` logic.
        Args:
            cfg (dict): Config dict. It should at least contain the key "type".
        Returns:
            obj: The constructed object.
        """

        assert isinstance(cfg, dict) and 'type' in cfg, 'each item in ' \
            "transforms must be a dict with keyword 'type'."
        args = cfg.copy()

        obj_type = args.pop('type')
        if mmengine.is_str(obj_type):
            obj_cls = getattr(albumentations, obj_type)
        elif inspect.isclass(obj_type):
            obj_cls = obj_type
        else:
            raise TypeError(
                f'type must be a str or valid type, but got {type(obj_type)}')

        if 'transforms' in args:
            args['transforms'] = [
                self.albu_builder(transform)
                for transform in args['transforms']
            ]

        return obj_cls(**args)

    @staticmethod
    def mapper(d, keymap):
        """Dictionary mapper.

        Renames keys according to keymap provided.
        Args:
            d (dict): old dict
            keymap (dict): {'old_key':'new_key'}
        Returns:
            dict: new dict.
        """

        updated_dict = {}
        for k, v in zip(d.keys(), d.values()):
            new_k = keymap.get(k, k)
            updated_dict[new_k] = d[k]
        return updated_dict

    def transform(self, results: Dict) -> Dict:
        """Transform function to perform albumentations transforms.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Transformed results, 'img' and 'img_shape' keys are
                updated in result dict.
        """
        assert 'img' in results, 'No `img` field in the input.'

        # dict to albumentations format
        results = self.mapper(results, self.keymap_to_albu)
        results = self.aug(**results)

        # back to the original format
        results = self.mapper(results, self.keymap_back)
        results['img_shape'] = results['img'].shape[:2]

        return results

    def __repr__(self):
        """Print the basic information of the transform.

        Returns:
            str: Formatted string.
        """
        repr_str = self.__class__.__name__
        repr_str += f'(transforms={repr(self.transforms)})'
        return repr_str