File size: 7,365 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# Copyright (c) OpenMMLab. All rights reserved.
import pickle
from typing import List, Optional

import mmengine.dist as dist
import numpy as np
from mmengine.fileio import (LocalBackend, exists, get, get_file_backend,
                             join_path)

from mmcls.registry import DATASETS
from .base_dataset import BaseDataset
from .categories import CIFAR10_CATEGORIES, CIFAR100_CATEGORIES
from .utils import check_md5, download_and_extract_archive


@DATASETS.register_module()
class CIFAR10(BaseDataset):
    """`CIFAR10 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.

    This implementation is modified from
    https://github.com/pytorch/vision/blob/master/torchvision/datasets/cifar.py

    Args:
        data_prefix (str): Prefix for data.
        test_mode (bool): ``test_mode=True`` means in test phase.
            It determines to use the training set or test set.
        metainfo (dict, optional): Meta information for dataset, such as
            categories information. Defaults to None.
        data_root (str): The root directory for ``data_prefix``.
            Defaults to ''.
        download (bool): Whether to download the dataset if not exists.
            Defaults to True.
        **kwargs: Other keyword arguments in :class:`BaseDataset`.
    """  # noqa: E501

    base_folder = 'cifar-10-batches-py'
    url = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
    filename = 'cifar-10-python.tar.gz'
    tgz_md5 = 'c58f30108f718f92721af3b95e74349a'
    train_list = [
        ['data_batch_1', 'c99cafc152244af753f735de768cd75f'],
        ['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'],
        ['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'],
        ['data_batch_4', '634d18415352ddfa80567beed471001a'],
        ['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'],
    ]

    test_list = [
        ['test_batch', '40351d587109b95175f43aff81a1287e'],
    ]
    meta = {
        'filename': 'batches.meta',
        'key': 'label_names',
        'md5': '5ff9c542aee3614f3951f8cda6e48888',
    }
    METAINFO = {'classes': CIFAR10_CATEGORIES}

    def __init__(self,
                 data_prefix: str,
                 test_mode: bool,
                 metainfo: Optional[dict] = None,
                 data_root: str = '',
                 download: bool = True,
                 **kwargs):
        self.download = download
        super().__init__(
            # The CIFAR dataset doesn't need specify annotation file
            ann_file='',
            metainfo=metainfo,
            data_root=data_root,
            data_prefix=dict(root=data_prefix),
            test_mode=test_mode,
            **kwargs)

    def load_data_list(self):
        """Load images and ground truth labels."""
        root = self.data_prefix['root']
        backend = get_file_backend(root, enable_singleton=True)

        if dist.is_main_process() and not self._check_integrity():
            if not isinstance(backend, LocalBackend):
                raise RuntimeError(f'The dataset on {root} is not integrated, '
                                   f'please manually handle it.')

            if self.download:
                download_and_extract_archive(
                    self.url, root, filename=self.filename, md5=self.tgz_md5)
            else:
                raise RuntimeError(
                    f'Cannot find {self.__class__.__name__} dataset in '
                    f"{self.data_prefix['root']}, you can specify "
                    '`download=True` to download automatically.')

        dist.barrier()
        assert self._check_integrity(), \
            'Download failed or shared storage is unavailable. Please ' \
            f'download the dataset manually through {self.url}.'

        if not self.test_mode:
            downloaded_list = self.train_list
        else:
            downloaded_list = self.test_list

        imgs = []
        gt_labels = []

        # load the picked numpy arrays
        for file_name, _ in downloaded_list:
            file_path = join_path(root, self.base_folder, file_name)
            entry = pickle.loads(get(file_path), encoding='latin1')
            imgs.append(entry['data'])
            if 'labels' in entry:
                gt_labels.extend(entry['labels'])
            else:
                gt_labels.extend(entry['fine_labels'])

        imgs = np.vstack(imgs).reshape(-1, 3, 32, 32)
        imgs = imgs.transpose((0, 2, 3, 1))  # convert to HWC

        if self.CLASSES is None:
            # The metainfo in the file has the lowest priority, therefore
            # we only need to load it if classes is not specified.
            self._load_meta()

        data_list = []
        for img, gt_label in zip(imgs, gt_labels):
            info = {'img': img, 'gt_label': int(gt_label)}
            data_list.append(info)
        return data_list

    def _load_meta(self):
        """Load categories information from metafile."""
        root = self.data_prefix['root']

        path = join_path(root, self.base_folder, self.meta['filename'])
        md5 = self.meta.get('md5', None)
        if not exists(path) or (md5 is not None and not check_md5(path, md5)):
            raise RuntimeError(
                'Dataset metadata file not found or corrupted.' +
                ' You can use `download=True` to download it')
        data = pickle.loads(get(path), encoding='latin1')
        self._metainfo.setdefault('classes', data[self.meta['key']])

    def _check_integrity(self):
        """Check the integrity of data files."""
        root = self.data_prefix['root']

        for fentry in (self.train_list + self.test_list):
            filename, md5 = fentry[0], fentry[1]
            fpath = join_path(root, self.base_folder, filename)
            if not exists(fpath):
                return False
            if md5 is not None and not check_md5(fpath, md5):
                return False
        return True

    def extra_repr(self) -> List[str]:
        """The extra repr information of the dataset."""
        body = [f"Prefix of data: \t{self.data_prefix['root']}"]
        return body


@DATASETS.register_module()
class CIFAR100(CIFAR10):
    """`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.

    Args:
        data_prefix (str): Prefix for data.
        test_mode (bool): ``test_mode=True`` means in test phase.
            It determines to use the training set or test set.
        metainfo (dict, optional): Meta information for dataset, such as
            categories information. Defaults to None.
        data_root (str): The root directory for ``data_prefix``.
            Defaults to ''.
        download (bool): Whether to download the dataset if not exists.
            Defaults to True.
        **kwargs: Other keyword arguments in :class:`BaseDataset`.
    """

    base_folder = 'cifar-100-python'
    url = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz'
    filename = 'cifar-100-python.tar.gz'
    tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85'
    train_list = [
        ['train', '16019d7e3df5f24257cddd939b257f8d'],
    ]

    test_list = [
        ['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'],
    ]
    meta = {
        'filename': 'meta',
        'key': 'fine_label_names',
        'md5': '7973b15100ade9c7d40fb424638fde48',
    }
    METAINFO = {'classes': CIFAR100_CATEGORIES}