File size: 5,966 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple

from torch import Tensor

from mmdet.models.task_modules import SamplingResult
from mmdet.registry import MODELS
from mmdet.structures import DetDataSample
from mmdet.structures.bbox import bbox2roi
from mmdet.utils import InstanceList
from ..losses.pisa_loss import carl_loss, isr_p
from ..utils import unpack_gt_instances
from .standard_roi_head import StandardRoIHead


@MODELS.register_module()
class PISARoIHead(StandardRoIHead):
    r"""The RoI head for `Prime Sample Attention in Object Detection
    <https://arxiv.org/abs/1904.04821>`_."""

    def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
             batch_data_samples: List[DetDataSample]) -> dict:
        """Perform forward propagation and loss calculation of the detection
        roi on the features of the upstream network.

        Args:
            x (tuple[Tensor]): List of multi-level img features.
            rpn_results_list (list[:obj:`InstanceData`]): List of region
                proposals.
            batch_data_samples (list[:obj:`DetDataSample`]): The batch
                data samples. It usually includes information such
                as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.

        Returns:
            dict[str, Tensor]: A dictionary of loss components
        """
        assert len(rpn_results_list) == len(batch_data_samples)
        outputs = unpack_gt_instances(batch_data_samples)
        batch_gt_instances, batch_gt_instances_ignore, _ = outputs

        # assign gts and sample proposals
        num_imgs = len(batch_data_samples)
        sampling_results = []
        neg_label_weights = []
        for i in range(num_imgs):
            # rename rpn_results.bboxes to rpn_results.priors
            rpn_results = rpn_results_list[i]
            rpn_results.priors = rpn_results.pop('bboxes')

            assign_result = self.bbox_assigner.assign(
                rpn_results, batch_gt_instances[i],
                batch_gt_instances_ignore[i])
            sampling_result = self.bbox_sampler.sample(
                assign_result,
                rpn_results,
                batch_gt_instances[i],
                feats=[lvl_feat[i][None] for lvl_feat in x])
            if isinstance(sampling_result, tuple):
                sampling_result, neg_label_weight = sampling_result
            sampling_results.append(sampling_result)
            neg_label_weights.append(neg_label_weight)

        losses = dict()
        # bbox head forward and loss
        if self.with_bbox:
            bbox_results = self.bbox_loss(
                x, sampling_results, neg_label_weights=neg_label_weights)
            losses.update(bbox_results['loss_bbox'])

        # mask head forward and loss
        if self.with_mask:
            mask_results = self.mask_loss(x, sampling_results,
                                          bbox_results['bbox_feats'],
                                          batch_gt_instances)
            losses.update(mask_results['loss_mask'])

        return losses

    def bbox_loss(self,
                  x: Tuple[Tensor],
                  sampling_results: List[SamplingResult],
                  neg_label_weights: List[Tensor] = None) -> dict:
        """Perform forward propagation and loss calculation of the bbox head on
        the features of the upstream network.

        Args:
            x (tuple[Tensor]): List of multi-level img features.
            sampling_results (list["obj:`SamplingResult`]): Sampling results.

        Returns:
            dict[str, Tensor]: Usually returns a dictionary with keys:

            - `cls_score` (Tensor): Classification scores.
            - `bbox_pred` (Tensor): Box energies / deltas.
            - `bbox_feats` (Tensor): Extract bbox RoI features.
            - `loss_bbox` (dict): A dictionary of bbox loss components.
        """
        rois = bbox2roi([res.priors for res in sampling_results])
        bbox_results = self._bbox_forward(x, rois)
        bbox_targets = self.bbox_head.get_targets(sampling_results,
                                                  self.train_cfg)

        # neg_label_weights obtained by sampler is image-wise, mapping back to
        # the corresponding location in label weights
        if neg_label_weights[0] is not None:
            label_weights = bbox_targets[1]
            cur_num_rois = 0
            for i in range(len(sampling_results)):
                num_pos = sampling_results[i].pos_inds.size(0)
                num_neg = sampling_results[i].neg_inds.size(0)
                label_weights[cur_num_rois + num_pos:cur_num_rois + num_pos +
                              num_neg] = neg_label_weights[i]
                cur_num_rois += num_pos + num_neg

        cls_score = bbox_results['cls_score']
        bbox_pred = bbox_results['bbox_pred']

        # Apply ISR-P
        isr_cfg = self.train_cfg.get('isr', None)
        if isr_cfg is not None:
            bbox_targets = isr_p(
                cls_score,
                bbox_pred,
                bbox_targets,
                rois,
                sampling_results,
                self.bbox_head.loss_cls,
                self.bbox_head.bbox_coder,
                **isr_cfg,
                num_class=self.bbox_head.num_classes)
        loss_bbox = self.bbox_head.loss(cls_score, bbox_pred, rois,
                                        *bbox_targets)

        # Add CARL Loss
        carl_cfg = self.train_cfg.get('carl', None)
        if carl_cfg is not None:
            loss_carl = carl_loss(
                cls_score,
                bbox_targets[0],
                bbox_pred,
                bbox_targets[2],
                self.bbox_head.loss_bbox,
                **carl_cfg,
                num_class=self.bbox_head.num_classes)
            loss_bbox.update(loss_carl)

        bbox_results.update(loss_bbox=loss_bbox)
        return bbox_results