Spaces:
Runtime error
Runtime error
File size: 11,667 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple
import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import Conv2d, Linear, MaxPool2d
from mmengine.config import ConfigDict
from mmengine.model import BaseModule
from mmengine.structures import InstanceData
from torch import Tensor
from torch.nn.modules.utils import _pair
from mmdet.models.task_modules.samplers import SamplingResult
from mmdet.registry import MODELS
from mmdet.utils import ConfigType, InstanceList, OptMultiConfig
@MODELS.register_module()
class MaskIoUHead(BaseModule):
"""Mask IoU Head.
This head predicts the IoU of predicted masks and corresponding gt masks.
Args:
num_convs (int): The number of convolution layers. Defaults to 4.
num_fcs (int): The number of fully connected layers. Defaults to 2.
roi_feat_size (int): RoI feature size. Default to 14.
in_channels (int): The channel number of inputs features.
Defaults to 256.
conv_out_channels (int): The feature channels of convolution layers.
Defaults to 256.
fc_out_channels (int): The feature channels of fully connected layers.
Defaults to 1024.
num_classes (int): Number of categories excluding the background
category. Defaults to 80.
loss_iou (:obj:`ConfigDict` or dict): IoU loss.
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
dict], optional): Initialization config dict.
"""
def __init__(
self,
num_convs: int = 4,
num_fcs: int = 2,
roi_feat_size: int = 14,
in_channels: int = 256,
conv_out_channels: int = 256,
fc_out_channels: int = 1024,
num_classes: int = 80,
loss_iou: ConfigType = dict(type='MSELoss', loss_weight=0.5),
init_cfg: OptMultiConfig = [
dict(type='Kaiming', override=dict(name='convs')),
dict(type='Caffe2Xavier', override=dict(name='fcs')),
dict(type='Normal', std=0.01, override=dict(name='fc_mask_iou'))
]
) -> None:
super().__init__(init_cfg=init_cfg)
self.in_channels = in_channels
self.conv_out_channels = conv_out_channels
self.fc_out_channels = fc_out_channels
self.num_classes = num_classes
self.convs = nn.ModuleList()
for i in range(num_convs):
if i == 0:
# concatenation of mask feature and mask prediction
in_channels = self.in_channels + 1
else:
in_channels = self.conv_out_channels
stride = 2 if i == num_convs - 1 else 1
self.convs.append(
Conv2d(
in_channels,
self.conv_out_channels,
3,
stride=stride,
padding=1))
roi_feat_size = _pair(roi_feat_size)
pooled_area = (roi_feat_size[0] // 2) * (roi_feat_size[1] // 2)
self.fcs = nn.ModuleList()
for i in range(num_fcs):
in_channels = (
self.conv_out_channels *
pooled_area if i == 0 else self.fc_out_channels)
self.fcs.append(Linear(in_channels, self.fc_out_channels))
self.fc_mask_iou = Linear(self.fc_out_channels, self.num_classes)
self.relu = nn.ReLU()
self.max_pool = MaxPool2d(2, 2)
self.loss_iou = MODELS.build(loss_iou)
def forward(self, mask_feat: Tensor, mask_preds: Tensor) -> Tensor:
"""Forward function.
Args:
mask_feat (Tensor): Mask features from upstream models.
mask_preds (Tensor): Mask predictions from mask head.
Returns:
Tensor: Mask IoU predictions.
"""
mask_preds = mask_preds.sigmoid()
mask_pred_pooled = self.max_pool(mask_preds.unsqueeze(1))
x = torch.cat((mask_feat, mask_pred_pooled), 1)
for conv in self.convs:
x = self.relu(conv(x))
x = x.flatten(1)
for fc in self.fcs:
x = self.relu(fc(x))
mask_iou = self.fc_mask_iou(x)
return mask_iou
def loss_and_target(self, mask_iou_pred: Tensor, mask_preds: Tensor,
mask_targets: Tensor,
sampling_results: List[SamplingResult],
batch_gt_instances: InstanceList,
rcnn_train_cfg: ConfigDict) -> dict:
"""Calculate the loss and targets of MaskIoUHead.
Args:
mask_iou_pred (Tensor): Mask IoU predictions results, has shape
(num_pos, num_classes)
mask_preds (Tensor): Mask predictions from mask head, has shape
(num_pos, mask_size, mask_size).
mask_targets (Tensor): The ground truth masks assigned with
predictions, has shape
(num_pos, mask_size, mask_size).
sampling_results (List[obj:SamplingResult]): Assign results of
all images in a batch after sampling.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It includes ``masks`` inside.
rcnn_train_cfg (obj:`ConfigDict`): `train_cfg` of RCNN.
Returns:
dict: A dictionary of loss and targets components.
The targets are only used for cascade rcnn.
"""
mask_iou_targets = self.get_targets(
sampling_results=sampling_results,
batch_gt_instances=batch_gt_instances,
mask_preds=mask_preds,
mask_targets=mask_targets,
rcnn_train_cfg=rcnn_train_cfg)
pos_inds = mask_iou_targets > 0
if pos_inds.sum() > 0:
loss_mask_iou = self.loss_iou(mask_iou_pred[pos_inds],
mask_iou_targets[pos_inds])
else:
loss_mask_iou = mask_iou_pred.sum() * 0
return dict(loss_mask_iou=loss_mask_iou)
def get_targets(self, sampling_results: List[SamplingResult],
batch_gt_instances: InstanceList, mask_preds: Tensor,
mask_targets: Tensor,
rcnn_train_cfg: ConfigDict) -> Tensor:
"""Compute target of mask IoU.
Mask IoU target is the IoU of the predicted mask (inside a bbox) and
the gt mask of corresponding gt mask (the whole instance).
The intersection area is computed inside the bbox, and the gt mask area
is computed with two steps, firstly we compute the gt area inside the
bbox, then divide it by the area ratio of gt area inside the bbox and
the gt area of the whole instance.
Args:
sampling_results (list[:obj:`SamplingResult`]): sampling results.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It includes ``masks`` inside.
mask_preds (Tensor): Predicted masks of each positive proposal,
shape (num_pos, h, w).
mask_targets (Tensor): Gt mask of each positive proposal,
binary map of the shape (num_pos, h, w).
rcnn_train_cfg (obj:`ConfigDict`): Training config for R-CNN part.
Returns:
Tensor: mask iou target (length == num positive).
"""
pos_proposals = [res.pos_priors for res in sampling_results]
pos_assigned_gt_inds = [
res.pos_assigned_gt_inds for res in sampling_results
]
gt_masks = [res.masks for res in batch_gt_instances]
# compute the area ratio of gt areas inside the proposals and
# the whole instance
area_ratios = map(self._get_area_ratio, pos_proposals,
pos_assigned_gt_inds, gt_masks)
area_ratios = torch.cat(list(area_ratios))
assert mask_targets.size(0) == area_ratios.size(0)
mask_preds = (mask_preds > rcnn_train_cfg.mask_thr_binary).float()
mask_pred_areas = mask_preds.sum((-1, -2))
# mask_preds and mask_targets are binary maps
overlap_areas = (mask_preds * mask_targets).sum((-1, -2))
# compute the mask area of the whole instance
gt_full_areas = mask_targets.sum((-1, -2)) / (area_ratios + 1e-7)
mask_iou_targets = overlap_areas / (
mask_pred_areas + gt_full_areas - overlap_areas)
return mask_iou_targets
def _get_area_ratio(self, pos_proposals: Tensor,
pos_assigned_gt_inds: Tensor,
gt_masks: InstanceData) -> Tensor:
"""Compute area ratio of the gt mask inside the proposal and the gt
mask of the corresponding instance.
Args:
pos_proposals (Tensor): Positive proposals, has shape (num_pos, 4).
pos_assigned_gt_inds (Tensor): positive proposals assigned ground
truth index.
gt_masks (BitmapMask or PolygonMask): Gt masks (the whole instance)
of each image, with the same shape of the input image.
Returns:
Tensor: The area ratio of the gt mask inside the proposal and the
gt mask of the corresponding instance.
"""
num_pos = pos_proposals.size(0)
if num_pos > 0:
area_ratios = []
proposals_np = pos_proposals.cpu().numpy()
pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy()
# compute mask areas of gt instances (batch processing for speedup)
gt_instance_mask_area = gt_masks.areas
for i in range(num_pos):
gt_mask = gt_masks[pos_assigned_gt_inds[i]]
# crop the gt mask inside the proposal
bbox = proposals_np[i, :].astype(np.int32)
gt_mask_in_proposal = gt_mask.crop(bbox)
ratio = gt_mask_in_proposal.areas[0] / (
gt_instance_mask_area[pos_assigned_gt_inds[i]] + 1e-7)
area_ratios.append(ratio)
area_ratios = torch.from_numpy(np.stack(area_ratios)).float().to(
pos_proposals.device)
else:
area_ratios = pos_proposals.new_zeros((0, ))
return area_ratios
def predict_by_feat(self, mask_iou_preds: Tuple[Tensor],
results_list: InstanceList) -> InstanceList:
"""Predict the mask iou and calculate it into ``results.scores``.
Args:
mask_iou_preds (Tensor): Mask IoU predictions results, has shape
(num_proposals, num_classes)
results_list (list[:obj:`InstanceData`]): Detection results of
each image.
Returns:
list[:obj:`InstanceData`]: Detection results of each image
after the post process. Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
- masks (Tensor): Has a shape (num_instances, H, W).
"""
assert len(mask_iou_preds) == len(results_list)
for results, mask_iou_pred in zip(results_list, mask_iou_preds):
labels = results.labels
scores = results.scores
results.scores = scores * mask_iou_pred[range(labels.size(0)),
labels]
return results_list
|